Suppr超能文献

基于视觉和计算机的夜间及24小时眼电图记录中慢眼动检测

Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.

作者信息

Magosso E, Ursino M, Zaniboni A, Provini F, Montagna P

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy.

出版信息

Clin Neurophysiol. 2007 May;118(5):1122-33. doi: 10.1016/j.clinph.2007.01.014. Epub 2007 Mar 23.

Abstract

OBJECTIVE

The present work aimed to evaluate the performance of an automatic slow eye movement (SEM) detector in overnight and 24-h electro-oculograms (EOG) including all sleep stages (1, 2, 3, 4, REM) and wakefulness.

METHODS

Ten overnight and five 24-h EOG recordings acquired in healthy subjects were inspected by three experts to score SEMs. Computerized EOG analysis to detect SEMs was performed on 30-s epochs using an algorithm based on EOG wavelet transform, recently developed by our group and initially validated by considering only pre-sleep wakefulness, stages 1 and 2.

RESULTS

The validation procedure showed the algorithm could identify epochs containing SEM activity (concordance index k=0.62, 80.7% sensitivity, 63% selectivity). In particular, the experts and the algorithm identified SEM epochs mainly in pre-sleep wakefulness, stage 1, stage 2 and REM sleep. In addition, the algorithm yielded consistent indications as to the duration and position of SEM events within the epoch.

CONCLUSIONS

The study confirmed SEM activity at physiological sleep onset (pre-sleep wakefulness, stage 1 and stage 2), and also identified SEMs in REM sleep. The algorithm proved reliable even in the stages not used for its training.

SIGNIFICANCE

The study may enhance our understanding of SEM meaning and function. The algorithm is a reliable tool for automatic SEM detection, overcoming the inconsistency of manual scoring and reducing the time taken by experts.

摘要

目的

本研究旨在评估一种自动慢眼动(SEM)检测器在夜间及24小时眼电图(EOG)中的性能,该眼电图涵盖所有睡眠阶段(1、2、3、4、快速眼动期)及清醒状态。

方法

由三位专家对10例健康受试者的夜间EOG记录和5例24小时EOG记录进行检查,以对慢眼动进行评分。使用基于EOG小波变换的算法,对30秒时间段进行计算机化EOG分析以检测慢眼动,该算法由我们团队最近开发,最初仅通过考虑睡前清醒、1期和2期进行验证。

结果

验证程序表明该算法能够识别包含慢眼动活动的时间段(一致性指数k = 0.62,灵敏度80.7%,选择性63%)。特别是,专家和算法主要在睡前清醒、1期、2期和快速眼动睡眠阶段识别出慢眼动时间段。此外,该算法在时间段内慢眼动事件的持续时间和位置方面给出了一致的指示。

结论

该研究证实了在生理性睡眠开始时(睡前清醒、1期和2期)存在慢眼动活动,并且还在快速眼动睡眠中识别出了慢眼动。该算法即使在未用于其训练的阶段也被证明是可靠的。

意义

该研究可能会增进我们对慢眼动意义和功能的理解。该算法是一种用于自动检测慢眼动的可靠工具,克服了人工评分的不一致性并减少了专家所需的时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验