Suppr超能文献

日本鞘氨醇单胞菌UT26中编码假定的ABC型转运蛋白的基因的鉴定与表征,该转运蛋白对γ-六氯环己烷的利用至关重要。

Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26.

作者信息

Endo Ryo, Ohtsubo Yoshiyuki, Tsuda Masataka, Nagata Yuji

机构信息

Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan.

出版信息

J Bacteriol. 2007 May;189(10):3712-20. doi: 10.1128/JB.01883-06. Epub 2007 Mar 16.

Abstract

Sphingobium japonicum UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as its sole source of carbon and energy. In our previous studies, we cloned and characterized genes encoding enzymes for the conversion of gamma-HCH to beta-ketoadipate in UT26. In this study, we analyzed a mutant obtained by transposon mutagenesis and identified and characterized new genes encoding a putative ABC-type transporter essential for the utilization of gamma-HCH in strain UT26. This putative ABC transporter consists of four components, permease, ATPase, periplasmic protein, and lipoprotein, encoded by linK, linL, linM, and linN, respectively. Mutation and complementation analyses indicated that all the linKLMN genes are required, probably as a set, for gamma-HCH utilization in UT26. Furthermore, the mutant cells deficient in this putative ABC transporter showed (i) higher gamma-HCH degradation activity and greater accumulation of the toxic dead-end product 2,5-dichlorophenol (2,5-DCP), (ii) higher sensitivity to 2,5-DCP itself, and (iii) higher permeability of hydrophobic compounds than the wild-type cells. These results strongly suggested that LinKLMN are involved in gamma-HCH utilization by controlling membrane hydrophobicity. This study clearly demonstrated that a cellular factor besides catabolic enzymes and transcriptional regulators is essential for utilization of xenobiotic compounds in bacterial cells.

摘要

日本鞘氨醇单胞菌UT26以γ-六氯环己烷(γ-HCH)作为唯一碳源和能源。在我们之前的研究中,我们克隆并鉴定了UT26中编码将γ-HCH转化为β-酮己二酸的酶的基因。在本研究中,我们分析了通过转座子诱变获得的一个突变体,并鉴定和表征了编码UT26菌株利用γ-HCH所必需的一种假定ABC型转运蛋白的新基因。这种假定的ABC转运蛋白由四个组分组成,即通透酶、ATP酶、周质蛋白和脂蛋白,分别由linK、linL、linM和linN编码。突变和互补分析表明,所有linKLMN基因可能作为一个整体,是UT26利用γ-HCH所必需的。此外,缺乏这种假定ABC转运蛋白的突变细胞表现出:(i)更高的γ-HCH降解活性和有毒终产物2,5-二氯苯酚(2,5-DCP)的更多积累;(ii)对2,5-DCP本身更高的敏感性;(iii)与野生型细胞相比,对疏水性化合物具有更高的通透性。这些结果强烈表明,LinKLMN通过控制膜疏水性参与γ-HCH的利用。本研究清楚地表明,除分解代谢酶和转录调节因子外,一种细胞因子对于细菌细胞中异源生物化合物的利用也是必不可少的。

相似文献

2
Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis.
Appl Microbiol Biotechnol. 2007 Sep;76(4):741-52. doi: 10.1007/s00253-007-1066-x. Epub 2007 Jul 19.
3
Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium.
Enzyme Microb Technol. 2011 Dec 10;49(6-7):499-508. doi: 10.1016/j.enzmictec.2011.10.005. Epub 2011 Nov 7.
4
Growth inhibition by metabolites of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26.
Biosci Biotechnol Biochem. 2006 Apr;70(4):1029-32. doi: 10.1271/bbb.70.1029.
6
Distribution of gamma-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26.
FEMS Microbiol Lett. 2006 Mar;256(1):112-8. doi: 10.1111/j.1574-6968.2005.00096.x.
7
Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26.
J Bacteriol. 2010 Nov;192(21):5852-3. doi: 10.1128/JB.00961-10. Epub 2010 Sep 3.
8
The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids.
Biosci Biotechnol Biochem. 2011;75(3):466-72. doi: 10.1271/bbb.100652. Epub 2011 Mar 7.
9
Genome evolution related to γ-hexachlorocyclohexane metabolic function in the soil microbial population.
Biosci Biotechnol Biochem. 2022 May 24;86(6):800-809. doi: 10.1093/bbb/zbac042.
10
Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite.
Int J Syst Evol Microbiol. 2009 Dec;59(Pt 12):3140-4. doi: 10.1099/ijs.0.005553-0. Epub 2009 Jul 30.

引用本文的文献

1
Revelation of bioremediation approaches for hexachlorocyclohexane degradation in soil.
World J Microbiol Biotechnol. 2023 Jul 6;39(9):243. doi: 10.1007/s11274-023-03692-3.
2
Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome.
Microbiome. 2022 Oct 24;10(1):179. doi: 10.1186/s40168-022-01369-x.
3
Structural mechanism of phospholipids translocation by MlaFEDB complex.
Cell Res. 2020 Dec;30(12):1127-1135. doi: 10.1038/s41422-020-00404-6. Epub 2020 Sep 3.
4
Complexity of Complement Resistance Factors Expressed by Needed for Survival in Human Serum.
J Immunol. 2017 Oct 15;199(8):2803-2814. doi: 10.4049/jimmunol.1700877. Epub 2017 Aug 30.
8
Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.
PLoS One. 2014 Mar 11;9(3):e91162. doi: 10.1371/journal.pone.0091162. eCollection 2014.
10
Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels.
PLoS One. 2012;7(9):e46219. doi: 10.1371/journal.pone.0046219. Epub 2012 Sep 28.

本文引用的文献

1
Characterization of mycobacterial virulence genes through genetic interaction mapping.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11760-5. doi: 10.1073/pnas.0603179103. Epub 2006 Jul 25.
2
A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10817-22. doi: 10.1073/pnas.0602754103. Epub 2006 Jul 3.
3
Growth inhibition by metabolites of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26.
Biosci Biotechnol Biochem. 2006 Apr;70(4):1029-32. doi: 10.1271/bbb.70.1029.
4
Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads.
Trends Biotechnol. 2006 Mar;24(3):121-30. doi: 10.1016/j.tibtech.2006.01.005. Epub 2006 Feb 13.
5
Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3.
Appl Environ Microbiol. 2006 Feb;72(2):1302-9. doi: 10.1128/AEM.72.2.1302-1309.2006.
6
ABC transporter architecture and regulatory roles of accessory domains.
FEBS Lett. 2006 Feb 13;580(4):1023-35. doi: 10.1016/j.febslet.2005.11.079. Epub 2005 Dec 12.
7
Advances in understanding bacterial outer-membrane biogenesis.
Nat Rev Microbiol. 2006 Jan;4(1):57-66. doi: 10.1038/nrmicro1322.
10
Aerobic degradation of polychlorinated biphenyls.
Appl Microbiol Biotechnol. 2005 Apr;67(2):170-91. doi: 10.1007/s00253-004-1810-4. Epub 2004 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验