Suppr超能文献

Triple-helix formation and cooperative binding by oligodeoxynucleotides with a 3'-3' internucleotide junction.

作者信息

Froehler B C, Terhorst T, Shaw J P, McCurdy S N

机构信息

Gilead Sciences Inc., Foster City, California 94404.

出版信息

Biochemistry. 1992 Feb 18;31(6):1603-9. doi: 10.1021/bi00121a004.

Abstract

Triple-helix formation by oligodeoxynucleotides in a sequence-specific manner is limited to polypurine tracts of duplex DNA. To increase the number of biologically relevant targets for triple-helix formation, we have utilized oligodeoxynucleotides containing a 3'-3' internucleotide junction to allow for binding to opposite strands of duplex DNA. Molecular modeling was used to aid in the design of the xylose dinucleoside linker 1 that is rigid and minimizes the number of conformers to minimize the entropy of binding. Thermal denaturation studies show that a 3'-3'-linked oligodeoxynucleotide, bearing nine nucleotides on each side of the linker, has a higher Tm (47.6 degrees C) than that of a 21-mer binding to a single polypurine tract (45.3 degrees C). Binding domain minimization studies and sequence-specific alkylation of a target duplex demonstrate a high degree of cooperativity between the two triple-helix binding domains, thus allowing for an increase in the number of biologically relevant targets for triple-helix formation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验