Suppr超能文献

氨甲酰磷酸合成酶的突变分析。谷氨酸841的替换导致合成酶亚基的两个催化结构域之间功能偶联的丧失。

Mutational analysis of carbamyl phosphate synthetase. Substitution of Glu841 leads to loss of functional coupling between the two catalytic domains of the synthetase subunit.

作者信息

Guillou F, Liao M, Garcia-Espana A, Lusty C J

机构信息

Department of Molecular Genetics, Public Health Research Institute, New York, New York 10016.

出版信息

Biochemistry. 1992 Feb 18;31(6):1656-64. doi: 10.1021/bi00121a012.

Abstract

The synthetase subunit of Escherichia coli carbamyl phosphate synthetase has two catalytic nucleotide-binding domains, one involved in the activation of HCO3- and the second in phosphorylation of carbamate. Here we show that a Glu841----Lys841 substitution in a putative ATP-binding domain located in the carboxyl half of the synthetase abolishes overall synthesis of carbamyl phosphate with either glutamine or NH3 as the nitrogen source. Measurements of partial activities indicate that while HCO3(-)-dependent ATP hydrolysis at saturating concentrations of substrate proceeds at higher than normal rates, ATP synthesis from ADP and carbamyl phosphate is nearly completely suppressed by the mutation. These results indicate Glu841 to be an essential residue for the phosphorylation of carbamate in the terminal step of the catalytic mechanism. The Lys841 substitution also affects the kinetic properties of the HCO3- activation site. Both kcat and Km for ATP increase 10-fold, while Km for HCO3- is increased 100-fold. Significantly, NH3 decreases rather than stimulates Pi release from ATP in the HCO3(-)-dependent ATPase reaction. The increase in kcat of the HCO3(-)-dependent ATPase reaction, and an impaired ability of the Lys841 enzyme to catalyze the reaction of NH3 with carboxy phosphate, strongly argues for interactions between the two catalytic ATP sites that couple the formation of enzyme-bound carbamate with its phosphorylation.

摘要

大肠杆菌氨甲酰磷酸合成酶的合成酶亚基有两个催化性核苷酸结合结构域,一个参与HCO₃⁻的激活,另一个参与氨基甲酸盐的磷酸化。在此我们表明,位于合成酶羧基端的一个假定ATP结合结构域中的Glu841突变为Lys841,会消除以谷氨酰胺或NH₃作为氮源时氨甲酰磷酸的整体合成。部分活性的测定表明,虽然在底物饱和浓度下依赖HCO₃⁻的ATP水解以高于正常的速率进行,但由ADP和氨甲酰磷酸合成ATP几乎完全被该突变抑制。这些结果表明Glu841是催化机制末端步骤中氨基甲酸盐磷酸化的必需残基。Lys841替代也影响HCO₃⁻激活位点的动力学性质。ATP的kcat和Km均增加10倍,而HCO₃⁻的Km增加100倍。值得注意的是,在依赖HCO₃⁻的ATP酶反应中,NH₃会减少而非刺激ATP释放Pi。依赖HCO₃⁻的ATP酶反应kcat的增加,以及Lys841酶催化NH₃与磷酸羧基反应的能力受损,有力地证明了两个催化性ATP位点之间存在相互作用,这种相互作用将酶结合的氨基甲酸盐的形成与其磷酸化偶联起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验