Adachi Hayamitsu, Palaniappan Krishnan K, Ivanov Andrei A, Bergman Nathaniel, Gao Zhan-Guo, Jacobson Kenneth A
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
J Med Chem. 2007 Apr 19;50(8):1810-27. doi: 10.1021/jm061278q. Epub 2007 Mar 23.
2, N6, and 5'-substituted adenosine derivatives were synthesized via alkylation of 2-oxypurine nucleosides leading to 2-arylalkylether derivatives. 2-(3-(Indolyl)ethyloxy)adenosine 17 was examined in both binding and cAMP assays and found to be a potent agonist of the human A2BAR. Simplification, altered connectivity, and mimicking of the indole ring of 17 failed to maintain A2BAR potency. Introduction of N6-ethyl or N6-guanidino substitution, shown to favor A2BAR potency, failed to enhance potency in the 2-(3-(indolyl)ethyloxy)adenosine series. Indole 5' '- or 6' '-halo substitution was favored at the A2BAR, but a 5'-N-ethylcarboxyamide did not further enhance potency. 2-(3' '-(6' '-Bromoindolyl)ethyloxy)adenosine 28 displayed an A2BAR EC50 value of 128 nM, that is, more potent than the parent 17 (299 nM) and similar to 5'-N-ethylcarboxamidoadenosine (140 nM). Compound 28 was a full agonist at A2B and A2AARs and a low efficacy partial agonist at A1 and A3ARs. Thus, we have identified and optimized 2-(2-arylethyl)oxo moieties in AR agonists that enhance A2BAR potency and selectivity.