Shin Jieun, Shen Fran, Huguenard John
Department Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
J Physiol. 2007 Jun 1;581(Pt 2):679-91. doi: 10.1113/jphysiol.2007.130963. Epub 2007 Mar 22.
AMPA receptors (AMPARs) mediate the bulk of fast synaptic excitation in the CNS. We have recently shown that AMPAR-dependent synaptic transmission in immature neocortical pyramidal neurons is mediated by GluR2-deficient receptors that can be modulated by intra- or extracellular polyamines (PAs). Phosphorylation of AMPARs, e.g. by PKC, can lead to enhanced excitation, and PAs are known to modulate PKC activity. Therefore, PAs and PKC might interact to influence AMPAR function. To test this hypothesis, we made whole cell recordings from immature (P12-14) layer V pyramidal neurons and assayed two measures of PA influence on synaptic AMPAR function - inward rectification and use-dependent unblock (UDU), with the latter assayed by differences in rectification between a pair of EPSCs evoked at short (50 ms) latencies. We have previously shown that EPSCs in immature pyramidal neurons displayed inward rectification, which was enhanced by intracellular spermine, as was UDU. Staurosporin (ST), a PKC inhibitor, reversed the effect of PA on rectification and UDU, suggesting that PKC modulates postsynaptic activation of AMPARs. Similarly, polyamine-dependent rectification of spontaneous EPSCs was reversed by treatment with ST or GFX109203X, a specific PKC inhibitor. Chelating intracellular Ca(2+) with BAPTA reproduced the effects of ST. In addition, PA immunoreactivity in layer V pyramidal neurons was reduced by PKC inhibition indicating that PKC activity influences PA metabolism. Taken together, these data support the involvement of postsynaptic PKC activation in both the inward rectification and UDU of EPSCs in immature rat cortex, and suggest an important mechanism by which excitatory synaptic transmission can be dynamically modulated by changes in either Ca(2+) or PA.
α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs)介导中枢神经系统中大部分快速突触兴奋。我们最近发现,未成熟新皮质锥体神经元中依赖AMPAR的突触传递由缺乏GluR2的受体介导,这些受体可被细胞内或细胞外多胺(PAs)调节。AMPAR的磷酸化,例如由蛋白激酶C(PKC)介导的磷酸化,可导致兴奋增强,并且已知多胺可调节PKC活性。因此,多胺和PKC可能相互作用以影响AMPAR功能。为了验证这一假设,我们对未成熟(出生后12 - 14天)的V层锥体神经元进行了全细胞记录,并测定了多胺对突触AMPAR功能影响的两个指标——内向整流和使用依赖性解除阻断(UDU),后者通过在短(50毫秒)潜伏期诱发的一对兴奋性突触后电流(EPSCs)之间的整流差异来测定。我们之前已经表明,未成熟锥体神经元中的EPSCs表现出内向整流,细胞内精胺可增强这种整流,UDU也是如此。PKC抑制剂星形孢菌素(ST)可逆转多胺对整流和UDU的作用,表明PKC调节AMPAR的突触后激活。同样,用ST或特异性PKC抑制剂GFX109203X处理可逆转自发EPSCs的多胺依赖性整流。用1,2-双(2-氨基苯氧基)乙烷-N,N,N',N'-四乙酸(BAPTA)螯合细胞内钙离子可重现ST的作用。此外,PKC抑制可降低V层锥体神经元中的多胺免疫反应性,表明PKC活性影响多胺代谢。综上所述,这些数据支持突触后PKC激活参与未成熟大鼠皮质中EPSCs的内向整流和UDU,并提示了一种重要机制,通过该机制,兴奋性突触传递可被细胞内钙离子浓度(Ca(2+))或细胞内多胺浓度(PA)的变化动态调节。