Amejdki-Chab N, Costentin J, Bonnet J J
U.A. 1170 du CNRS, U.F.R. de Médecine et Pharmacie, Saint Etienne du Rouvray, France.
J Neurochem. 1992 Mar;58(3):793-800. doi: 10.1111/j.1471-4159.1992.tb09327.x.
The specific binding of [3H]1-[2-(diphenyl-methoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) to the dopamine (DA) neuronal carrier present in membranes prepared from rat striatum was not affected when Cl- was replaced by either Br- or NO3-. In media containing Cl-, Br-, or NO3-, d-amphetamine and DA competed with the radioligand in a monophasic manner with Hill coefficients of close to 1 (0.94-1.12). Replacement of Cl- by Br- impaired the ability of some substrates (d-amphetamine, DA, p-hydroxyamphetamine, and m-tyramine) to compete with [3H]GBR 12783. The potency of Br- to decrease the affinity of substrates for the specific binding site was significantly correlated (t = 7.07, p less than 0.001) with their affinity for this binding site. These results suggest that the various substrates tested could bind to recognition sites in which Cl- is differently involved; as a consequence, substrates could bind to the neuronal carrier by means of partly different links. In experiments dealing with the specific uptake of [3H]DA, F-, NO3-, isethionate-, or acetate- was unable to substitute for Cl-, whereas Br- was quite a total substitute. Replacement of Cl- by equimolar concentrations of either NO3- or isethionate- resulted in inhibition curves of DA specific uptake with Hill coefficients of close to 1 (0.77 and 1.04 respectively); this indicates that both NO3- and isethionate- are devoid of inhibitory effects on neuronal uptake and are quite ineffective substitutes for Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)