Suppr超能文献

用于分析/比较蛋白质和配体的通用参考框架。配体和蛋白质指纹图谱(FLAP):理论与应用。

A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.

作者信息

Baroni Massimo, Cruciani Gabriele, Sciabola Simone, Perruccio Francesca, Mason Jonathan S

机构信息

Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, United Kingdom.

出版信息

J Chem Inf Model. 2007 Mar-Apr;47(2):279-94. doi: 10.1021/ci600253e.

Abstract

A fast new algorithm (Fingerprints for Ligands And Proteins or FLAP) able to describe small molecules and protein structures using a common reference framework of four-point pharmacophore fingerprints and a molecular-cavity shape is described in detail. The procedure starts by using the GRID force field to calculate molecular interaction fields, which are then used to identify particular target locations where an energetic interaction with small molecular features would be very favorable. The target points thus calculated are then used by FLAP to build all possible four-point pharmacophores present in the given target site. A related approach can be applied to small molecules, using directly the GRID atom types to identify pharmacophoric features, and this complementary description of the target and ligand then leads to several novel applications. FLAP can be used for selectivity studies or similarity analyses in order to compare macromolecules without superposing them. Protein families can be compared and clustered into target classes, without bias from previous knowledge and without requiring protein superposition, alignment, or knowledge-based comparison. FLAP can be used effectively for ligand-based virtual screening and structure-based virtual screening, with the pharmacophore molecular recognition. Finally, the new method can calculate descriptors for chemometric analysis and can initiate a docking procedure. This paper presents the background to the new procedure and includes case studies illustrating several relevant applications of the new approach.

摘要

本文详细描述了一种快速的新算法(配体和蛋白质指纹识别算法,即FLAP),该算法能够使用四点药效团指纹和分子腔形状的通用参考框架来描述小分子和蛋白质结构。该过程首先使用GRID力场来计算分子相互作用场,然后利用这些相互作用场来识别特定的目标位置,在这些位置上与小分子特征的能量相互作用会非常有利。然后,FLAP利用这样计算出的目标点来构建给定目标位点中所有可能的四点药效团。一种相关的方法可以直接应用于小分子,利用GRID原子类型来识别药效团特征,对目标和配体的这种互补描述进而带来了几种新的应用。FLAP可用于选择性研究或相似性分析,以便在不进行大分子叠加的情况下比较大分子。可以对蛋白质家族进行比较并聚类为目标类别,而不受先前知识的影响,也无需蛋白质叠加、比对或基于知识的比较。FLAP可有效地用于基于配体的虚拟筛选和基于结构的虚拟筛选,并具有药效团分子识别功能。最后,这种新方法可以计算化学计量分析的描述符,并可以启动对接程序。本文介绍了新程序的背景,并包括案例研究,说明了新方法的几个相关应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验