Chaudhuri Rajat K, Freed Karl F
Indian Institute of Astrophysics, Bangalore 560034, India.
J Chem Phys. 2007 Mar 21;126(11):114103. doi: 10.1063/1.2566692.
The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method is extended to enable geometry optimization and the calculation of vibrational frequencies for ground and excited states using numerical energy gradients. Applications consider the ground state geometries and vibrational frequencies of the Be2, LiF, H2S, and HCN molecules, as well as excited state properties for HCN, systems that are sufficiently complex to access the efficacy of the method. Comparisons with other standard approaches (self-consistent field, second order Moller-Plesset perturbation theory, complete active space self-consistent field, and coupled cluster singles and doubles methods) demonstrate that the numerical gradient version of the IVO-CASCI approach generally fares comparable to or better for all systems studied. The accurate estimates for the Be2 bond length and vibrational frequency are notable since many other computationally facile methods produce poor results.
改进的虚拟轨道-完全活性空间组态相互作用(IVO-CASCI)方法得到扩展,以实现使用数值能量梯度对基态和激发态进行几何优化以及振动频率计算。应用中考虑了Be2、LiF、H2S和HCN分子的基态几何结构和振动频率,以及HCN的激发态性质,这些系统足够复杂,能够检验该方法的有效性。与其他标准方法(自洽场、二级莫勒-普莱塞特微扰理论、完全活性空间自洽场以及耦合簇单双激发方法)的比较表明,IVO-CASCI方法的数值梯度版本对于所有研究的系统通常表现相当或更好。对Be2键长和振动频率的准确估计值得注意,因为许多其他计算简便的方法得出的结果很差。