Rubin Jonathan, Josić Kresimir
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Neural Comput. 2007 May;19(5):1251-94. doi: 10.1162/neco.2007.19.5.1251.
We consider a fast-slow excitable system subject to a stochastic excitatory input train and show that under general conditions, its long-term behavior is captured by an irreducible Markov chain with a limiting distribution. This limiting distribution allows for the analytical calculation of the system's probability of firing in response to each input, the expected number of response failures between firings, and the distribution of slow variable values between firings. Moreover, using this approach, it is possible to understand why the system will not have a stationary distribution and why Monte Carlo simulations do not converge under certain conditions. The analytical calculations involved can be performed whenever the distribution of interexcitation intervals and the recovery dynamics of the slow variable are known. The method can be extended to other models that feature a single variable that builds up to a threshold where an instantaneous spike and reset occur. We also discuss how the Markov chain analysis generalizes to any pair of input trains, excitatory or inhibitory and synaptic or not, such that the frequencies of the two trains are sufficiently different from each other. We illustrate this analysis on a model thalamocortical (TC) cell subject to two example distributions of excitatory synaptic inputs in the cases of constant and rhythmic inhibition. The analysis shows a drastic drop in the likelihood of firing just after inhibitory onset in the case of rhythmic inhibition, relative even to the case of elevated but constant inhibition. This observation provides support for a possible mechanism for the induction of motor symptoms in Parkinson's disease and for their relief by deep brain stimulation, analyzed in Rubin and Terman (2004).
我们考虑一个受随机兴奋性输入序列影响的快慢可兴奋系统,并表明在一般条件下,其长期行为可由具有极限分布的不可约马尔可夫链来描述。这种极限分布使得能够通过解析计算得出系统对每个输入做出放电反应的概率、两次放电之间预期的反应失败次数以及两次放电之间慢变量值的分布。此外,使用这种方法,可以理解为什么系统不会有平稳分布,以及为什么蒙特卡罗模拟在某些条件下不会收敛。只要知道激发间隔的分布和慢变量的恢复动态,就可以进行相关的解析计算。该方法可以扩展到其他具有单个变量的模型,该变量会累积到一个阈值,在该阈值处会发生瞬时尖峰和重置。我们还讨论了马尔可夫链分析如何推广到任何一对输入序列,无论是兴奋性还是抑制性、有无突触连接,只要这两个序列的频率彼此足够不同。我们在一个丘脑皮质(TC)细胞模型上说明了这种分析,该模型在恒定抑制和节律性抑制的情况下受到两种兴奋性突触输入的示例分布的影响。分析表明,在节律性抑制的情况下,抑制开始后不久放电的可能性会急剧下降,甚至相对于抑制增强但恒定的情况也是如此。这一观察结果为帕金森病运动症状的诱发机制以及深部脑刺激对其缓解作用提供了一种可能的支持,如鲁宾和特尔曼(2004年)所分析的那样。