Martin Matthew T, Brennan Richard J, Hu Wenyue, Ayanoglu Eser, Lau Christopher, Ren Hongzu, Wood Carmen R, Corton J Christopher, Kavlock Robert J, Dix David J
National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Toxicol Sci. 2007 Jun;97(2):595-613. doi: 10.1093/toxsci/kfm065. Epub 2007 Mar 22.
Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluorinated chemicals [perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)] were administered daily via oral gavage for one, three, or five consecutive days to male Sprague-Dawley rats at single doses of 300, 300, 175, 20, or 10 mg/kg/day, respectively. Clinical chemistry, hematology, and histopathology were measured at all time points. Gene expression profiling of livers from three rats per treatment group at all time points was performed on the CodeLink Uniset Rat I Expression array. Data were analyzed in the context of a large reference toxicogenomic database containing gene expression profiles for over 630 chemicals. Genomic signatures predicting hepatomegaly and hepatic injury preceded those results for all five chemicals, and further analysis segregated chemicals into two distinct classes. The triazoles caused similar gene expression changes as other azole antifungals, particularly the induction of pregnane X receptor (PXR)-regulated xenobiotic metabolism and oxidative stress genes. In contrast, PFOA and PFOS exhibited peroxisome proliferator-activated receptor alpha agonist-like effects on genes associated with fatty acid homeostasis. PFOA and PFOS also resulted in downregulation of cholesterol biosynthesis genes, matching an in vivo decrease in serum cholesterol, and perturbation of thyroid hormone metabolism genes matched by serum thyroid hormone depletion in vivo. The concordance of in vivo observations and gene expression findings demonstrated the ability of genomics to accurately categorize chemicals, identify toxic mechanisms of action, and predict subsequent pathological responses.
对五种环境化学物质进行了毒理基因组学分析,以研究基因组学预测毒性、对化学物质进行分类以及阐明毒性机制的能力。三种三唑类抗真菌剂(腈菌唑、丙环唑和三唑酮)和两种全氟化合物[全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)]分别以300、300、175、20或10mg/kg/天的单剂量,通过每日经口灌胃的方式,连续1天、3天或5天给予雄性Sprague-Dawley大鼠。在所有时间点测量临床化学、血液学和组织病理学指标。在CodeLink Uniset Rat I表达阵列上,对每个处理组的三只大鼠在所有时间点的肝脏进行基因表达谱分析。在一个包含630多种化学物质基因表达谱的大型参考毒理基因组数据库的背景下对数据进行分析。预测肝肿大和肝损伤的基因组特征先于所有五种化学物质的这些结果出现,进一步分析将化学物质分为两个不同的类别。三唑类药物引起的基因表达变化与其他唑类抗真菌剂相似,特别是诱导孕烷X受体(PXR)调节的外源性物质代谢和氧化应激基因。相比之下,PFOA和PFOS对与脂肪酸稳态相关的基因表现出过氧化物酶体增殖物激活受体α激动剂样作用。PFOA和PFOS还导致胆固醇生物合成基因下调,与体内血清胆固醇降低相匹配,甲状腺激素代谢基因的扰动与体内血清甲状腺激素消耗相匹配。体内观察结果与基因表达结果的一致性证明了基因组学能够准确地对化学物质进行分类、识别毒性作用机制并预测随后的病理反应。