Suppr超能文献

基于最小二乘支持向量机的吲哚酮类细胞周期蛋白依赖性激酶抑制剂的构效关系研究

Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines.

作者信息

Li Jiazhong, Liu Huanxiang, Yao Xiaojun, Liu Mancang, Hu Zhide, Fan Botao

机构信息

Department of Chemistry, Lanzhou University, Lanzhou 730000, China.

出版信息

Anal Chim Acta. 2007 Jan 9;581(2):333-42. doi: 10.1016/j.aca.2006.08.031. Epub 2006 Aug 24.

Abstract

The least-squares support vector machines (LS-SVMs), as an effective modified algorithm of support vector machine, was used to build structure-activity relationship (SAR) models to classify the oxindole-based inhibitors of cyclin-dependent kinases (CDKs) based on their activity. Each compound was depicted by the structural descriptors that encode constitutional, topological, geometrical, electrostatic and quantum-chemical features. The forward-step-wise linear discriminate analysis method was used to search the descriptor space and select the structural descriptors responsible for activity. The linear discriminant analysis (LDA) and nonlinear LS-SVMs method were employed to build classification models, and the best results were obtained by the LS-SVMs method with prediction accuracy of 100% on the test set and 90.91% for CDK1 and CDK2, respectively, as well as that of LDA models 95.45% and 86.36%. This paper provides an effective method to screen CDKs inhibitors.

摘要

最小二乘支持向量机(LS-SVMs)作为支持向量机的一种有效改进算法,被用于构建构效关系(SAR)模型,以根据其活性对基于氧化吲哚的细胞周期蛋白依赖性激酶(CDKs)抑制剂进行分类。每个化合物都由编码组成、拓扑、几何、静电和量子化学特征的结构描述符来描述。采用逐步线性判别分析方法搜索描述符空间,并选择负责活性的结构描述符。使用线性判别分析(LDA)和非线性LS-SVMs方法构建分类模型,通过LS-SVMs方法获得了最佳结果,在测试集上的预测准确率为100%,对CDK1和CDK2的预测准确率分别为90.91%,而LDA模型的预测准确率分别为95.45%和86.36%。本文提供了一种筛选CDKs抑制剂的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验