Osswald Patrick, Struckmeier Ulf, Kasper Tina, Kohse-Höinghaus Katharina, Wang Juan, Cool Terrill A, Hansen Nils, Westmoreland Phillip R
Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
J Phys Chem A. 2007 May 17;111(19):4093-101. doi: 10.1021/jp068337w. Epub 2007 Mar 22.
The influences of fuel-specific destruction pathways on flame chemistry are determined for two isomeric ester fuels, methyl acetate, CH3(CO)OCH3, and ethyl formate, H(CO)OC2H5, used as model representatives for biodiesel compounds, and their potential for forming air pollutants is addressed. Measurements are presented of major and intermediate species mole fractions in premixed, laminar flat flames using molecular-beam sampling and isomer-selective VUV-photoionization mass spectrometry. The observed intermediate species concentrations depend crucially on decomposition of the different radicals formed initially from the fuels. The methyl acetate structure leads to preferential formation of formaldehyde, while the ethyl formate isomer favors the production of acetaldehyde. Ethyl formate also yields higher concentrations of the C2 species (C2H2 and C2H4) and C4 species (C4H2 and C4H4). Benzene concentrations, while larger for ethyl formate, are at least an order of magnitude smaller for both flames than seen for simple hydrocarbon fuels (ethylene, ethane, propene, and propane).
针对两种同分异构酯类燃料——乙酸甲酯(CH3(CO)OCH3)和甲酸乙酯(H(CO)OC2H5),它们被用作生物柴油化合物的模型代表,研究了特定燃料破坏途径对火焰化学的影响,并探讨了其形成空气污染物的可能性。使用分子束采样和异构体选择性真空紫外光电离质谱法,给出了预混层流平焰中主要和中间物种摩尔分数的测量结果。观察到的中间物种浓度主要取决于最初由燃料形成的不同自由基的分解。乙酸甲酯结构导致优先形成甲醛,而甲酸乙酯异构体则有利于乙醛的产生。甲酸乙酯还会产生更高浓度的C2物种(C2H2和C2H4)和C4物种(C4H2和C4H4)。虽然甲酸乙酯的苯浓度更高,但与简单烃类燃料(乙烯、乙烷、丙烯和丙烷)相比,两种火焰中的苯浓度至少低一个数量级。