Méreau Raphael, Desmedt Arnaud, Harris Kenneth D M
ISM-UMR 5255 CNRS, Université de Bordeaux I, 351 Cours de la Libération, F-33405 Talence Cedex, France.
J Phys Chem B. 2007 Apr 19;111(15):3960-8. doi: 10.1021/jp070291z. Epub 2007 Mar 24.
The chemical transformation of ammonium cyanate into urea has been of interest to many generations of scientists since its discovery by Friedrich Wöhler in 1828. Although widely studied both experimentally and theoretically, several mechanistic aspects of this reaction remain to be understood. In this paper, we apply computational methods to investigate the behavior of ammonium cyanate in the solid state under high pressure, employing a theoretical approach based on the self-consistent-charges density-functional tight-binding method (SCC-DFTB). The ammonium cyanate crystal structure was relaxed under external pressure ranging from 0 to 700 GPa, leading to the identification of five structural phases. Significantly, the phase at highest pressure (above 535 GPa) corresponds to the formation of urea molecules. At ca. 25 GPa, there is a phase transition of ammonium cyanate (from tetragonal P4/nmm to monoclinic P21/m) involving a rearrangement of the ammonium cyanate molecules. This transformation is critical for the subsequent transformation to urea. The crystalline phase of urea obtained above 535 GPa also has P21/m symmetry (Z = 2). This polymorph of urea has never been reported previously. Comparisons to the known (tetragonal) polymorph of urea found experimentally at ambient pressure suggests that the new polymorph is more stable above ca. 8 GPa. Our computational studies show that the transformation of ammonium cyanate into urea is strongly exothermic (enthalpy change -170 kJ mol-1 per formula unit between 530 and 535 GPa). The proposed mechanism for this transformation involves the transfer of two hydrogen atoms of the ammonium cation toward nitrogen atoms of neighboring cyanate anions, and the remaining NH2 group creates a C-NH2 bond with the cyanate unit.
自1828年弗里德里希·维勒发现氰酸铵转化为尿素以来,几代科学家都对这一化学转变颇感兴趣。尽管该反应在实验和理论方面都得到了广泛研究,但仍有几个反应机理方面有待深入了解。在本文中,我们应用计算方法,采用基于自洽电荷密度泛函紧束缚方法(SCC-DFTB)的理论方法,研究了高压下固态氰酸铵的行为。在0至700吉帕的外部压力下,氰酸铵晶体结构得到弛豫,从而确定了五个结构相。值得注意的是,最高压力(高于535吉帕)下的相对应于尿素分子的形成。在约25吉帕时,氰酸铵发生相变(从四方P4/nmm转变为单斜P21/m),涉及氰酸铵分子的重排。这种转变对于随后向尿素的转变至关重要。在535吉帕以上获得的尿素晶相也具有P21/m对称性(Z = 2)。这种尿素多晶型此前从未有过报道。与在常压下实验发现的已知(四方)尿素多晶型相比,表明新的多晶型在约8吉帕以上更稳定。我们的计算研究表明,氰酸铵向尿素的转变是强烈放热的(在530至535吉帕之间,每分子式单位的焓变为-170千焦·摩尔-1)。该转变的 proposed 机理涉及铵阳离子的两个氢原子向相邻氰酸根阴离子的氮原子转移,剩余的NH2基团与氰酸根单元形成C-NH2键。 (注:原文中“proposed”未翻译完整,可能是输入有误,正确翻译应该是“提出的”)