Suppr超能文献

肝脏X受体反应元件的分类与预测建模

Classification and predictive modeling of liver X receptor response elements.

作者信息

Varga Gabor, Su Chen

机构信息

Discovery Informatics, Eli Lilly and Company, Greenfield, Indiana 46140, USA.

出版信息

BioDrugs. 2007;21(2):117-24. doi: 10.2165/00063030-200721020-00006.

Abstract

BACKGROUND

The liver X receptor (LXR), a transcription factor that forms a heterodimer with the retinoid X receptor, plays a key role in the transcriptional regulation of many important genes implicated in prevalent metabolic diseases. In spite of numerous studies, a complete list of LXR direct target genes remains elusive. To complement experimental approaches, computational prediction can be used to help build such a list because all LXR target genes are expected to carry the response elements (LXREs) in their promoter or enhancer regions. In practice, however, such a prediction has been hampered by the inaccuracies of currently available predictive models of LXREs. We report on a novel computational application for the highly accurate prediction of LXREs in DNA sequences.

METHODS

We first conducted a comprehensive review of experimentally determined LXR target genes and collected all known LXREs. Subsequently, all such sites were classified using various computational methods based on sequence similarity to identify multiple subtypes. A library of Hidden Markov Models (LXRE.HMM) was developed to represent all subtypes and to enable the promoter scanning of LXR target genes.

RESULTS AND CONCLUSION

Our model outperformed the widely used LXRE model in MatInspector in identifying the LXREs for all known LXR direct target genes at the experimentally verified positions. As a result, this new approach will make the genomewide prediction of LXR target genes feasible.

摘要

背景

肝脏X受体(LXR)是一种与视黄酸X受体形成异二聚体的转录因子,在许多与常见代谢疾病相关的重要基因的转录调控中起关键作用。尽管进行了大量研究,但LXR直接靶基因的完整列表仍然难以确定。为了补充实验方法,可使用计算预测来帮助构建这样一个列表,因为所有LXR靶基因预计在其启动子或增强子区域携带反应元件(LXREs)。然而,在实践中,这种预测受到当前可用的LXRE预测模型不准确的阻碍。我们报告了一种用于在DNA序列中高精度预测LXREs的新型计算应用。

方法

我们首先对实验确定的LXR靶基因进行了全面综述,并收集了所有已知的LXREs。随后,使用基于序列相似性的各种计算方法对所有这些位点进行分类,以识别多个亚型。开发了一个隐马尔可夫模型库(LXRE.HMM)来代表所有亚型,并能够对LXR靶基因的启动子进行扫描。

结果与结论

在实验验证的位置识别所有已知LXR直接靶基因的LXREs时,我们的模型在识别能力上优于MatInspector中广泛使用的LXRE模型。因此,这种新方法将使全基因组范围内预测LXR靶基因成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验