Suppr超能文献

基于一氧化氮在长时程增强中作用的逆行性自适应共振理论。

Retrograde adaptive resonance theory based on the role of nitric oxide in long-term potentiation.

作者信息

Jia Peng, Yin Junsong, Hu Dewen, Zhou Zongtan

机构信息

College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, China.

出版信息

J Comput Neurosci. 2007 Aug;23(1):129-41. doi: 10.1007/s10827-007-0025-y. Epub 2007 Apr 3.

Abstract

Adaptive resonance theory (ART) demonstrates how the brain learns to recognize and categorize vast amounts of information by using top-down expectations and attentional focusing. ART 3, one member of the ART family, embeds the computational properties of the chemical synapse in its search process, but it converges slowly and is lack of stability when being applied in pattern recognition and analysis. To overcome these problems, Nitric Oxide (NO), which serves as a newly discovered retrograde messenger in Long-Term Potentiation (LTP), is introduced in retrograde adaptive resonance theory (ReART) model presented in this paper. In the presented model a novel search hypothesis is proposed to incorporate angle and amplitude information of an external input vector to decide whether the input matches the long-term memory (LTM) weights of an active node or not, and the embedded NO retrograde mechanism makes the search procedure a closed loop, which improves the stability and convergence speed of the transmitter releasing mechanism in a synapse. To make the model more adaptive and practical, a forgetting mechanism is built to improve the weights updating process. Experimental results indicate that the proposed ReART model achieves low error rate, fast convergence and self-organizing weights regulation.

摘要

自适应共振理论(ART)展示了大脑如何通过使用自上而下的期望和注意力聚焦来学习识别和分类大量信息。ART 3是ART家族的一员,它在搜索过程中嵌入了化学突触的计算特性,但在应用于模式识别和分析时收敛缓慢且缺乏稳定性。为了克服这些问题,本文提出的逆行自适应共振理论(ReART)模型引入了一氧化氮(NO),它是在长时程增强(LTP)中最新发现的逆行信使。在所提出的模型中,提出了一种新颖的搜索假设,将外部输入向量的角度和幅度信息纳入其中,以确定输入是否与活动节点的长期记忆(LTM)权重匹配,并且嵌入的NO逆行机制使搜索过程成为一个闭环,这提高了突触中递质释放机制的稳定性和收敛速度。为了使模型更具适应性和实用性,构建了一种遗忘机制来改进权重更新过程。实验结果表明,所提出的ReART模型实现了低错误率、快速收敛和自组织权重调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验