Suppr超能文献

[急性卒中患者医院感染的预测因素。与病死及转归的关系]

[Predictors of nosocomial infection in acute stroke. Relation with morbimortality and outcome].

作者信息

Ros Lourdes, García Miguel, Prat Josep, González Carmen, Gimeno Concepción, Albert Amparo, Pascual José María

机构信息

Servicio de Medicina Interna, Hospital de Sagunto, Agencia Valenciana de Salud, Puerto de Sagunto, Valencia, España.

出版信息

Med Clin (Barc). 2007 Mar 31;128(12):441-7. doi: 10.1157/13100582.

Abstract

BACKGROUND AND OBJECTIVE

Stroke is a very important cause of mortality and disability. This study has the objective of identifying predictor factors and the clinical consequences of nosocomial infection in acute stroke.

PATIENTS AND METHOD

We prospectively identified a consecutive cohort of patients who were admitted after an acute stroke. We used predefined diagnostic criteria by the World Health Organization and Sociedad Española de Neurología for stroke, and by Centers for Disease Control and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica for infection.

RESULTS

258 patients with acute stroke were included. 102 (39.5%) had at least one nosocomial infection -45.5% women; age (standard deviation) 78.2 (9.7) years-. The mean hospital stay was 14.9 days (8.4) in infection patients and 8.4 days (5.6) in no infection patients (p < 0.001). 31 patients died and 22 (71%) had at least one cause of infection. Using logistic regression analysis, the dysphagia (odds ratio [OR] = 12.7; 95% confidence interval [CI], 5.3-30.1; p < 0.001) is the strongest and independent predictor of nosocomial infection. Others factors are crural motor affectation (OR = 4.5; 95% CI, 1.7-12.3; p = 0.003), urinary incontinence (OR = 2.9; 95% CI, 1.3-6.4; p = 0.009) and diabetes mellitus (OR = 2.3; 95% CI, 1.1-4.7; p = 0.03). Baseline imbalance National Institutes of Health Stroke Scale (NIHSS) > 20 during the admission (OR = 17.3; 95% CI, 5.1-59.5; p < 0.001), mass effect diagnosticated on computerized axial tomography (OR = 4.4; 95% CI, 1.4-14; p = 0.012), poor neurological outcome during the first day (OR = 11.6; 95% CI, 3.6-37.2; p < 0.001), chest infection (OR = 5.7; 95% CI, 1.8-18.3; p = 0.003) and the hyperglucemia in admission (OR = 6; 95% CI, 1.5-25.6; p = 0.015) are the independient predictor factors that increased the likelihood for mortality in acute stroke. Baseline imbalance NIHSS > 20 (OR = 8.9; 95% CI, 2.7-29; p < 0.001), poor outcome neurological during the first day (OR = 8.1; 95% CI, 2.2-29.6%; p = 0.002) and the urinary incontinence (OR = 10.1; 95% CI, 5-20.6; p < 0.001) are the independient predictor factors that increased the likelihood of poor functional state in discharge.

CONCLUSIONS

Dysphagia, crural motor affectation, urinary incontinence and diabetes mellitus are the independient predictor factors that increase the likelihood for nosocomial infection in acute stroke. The chest infection increases significantly the likelihood of mortality during the hospital stay.

摘要

背景与目的

中风是导致死亡和残疾的一个非常重要的原因。本研究旨在确定急性中风患者医院感染的预测因素及临床后果。

患者与方法

我们前瞻性地纳入了一组急性中风后连续入院的患者队列。我们采用了世界卫生组织和西班牙神经学会制定的中风预定义诊断标准,以及美国疾病控制中心和西班牙传染病与临床微生物学会制定的感染诊断标准。

结果

共纳入258例急性中风患者。102例(39.5%)至少发生了一次医院感染,其中女性占45.5%;年龄(标准差)为78.2(9.7)岁。感染患者的平均住院时间为14.9天(8.4),未感染患者为8.4天(5.6)(p<0.001)。31例患者死亡,22例(71%)至少有一个感染原因。采用逻辑回归分析,吞咽困难(比值比[OR]=12.7;95%置信区间[CI],5.3 - 30.1;p<0.001)是医院感染最强且独立的预测因素。其他因素包括下肢运动功能障碍(OR = 4.5;95%CI,1.7 - 12.3;p = 0.003)、尿失禁(OR = 2.9;95%CI,1.3 - 6.4;p = 0.009)和糖尿病(OR = 2.3;95%CI,1.1 - 4.7;p = 0.03)。入院时美国国立卫生研究院卒中量表(NIHSS)基线失衡>20(OR = 17.3;95%CI,5.1 - 59.5;p<0.001)、计算机断层扫描诊断有占位效应(OR = 4.4;95%CI,1.4 - 14;p = 0.012)、第一天神经功能预后差(OR = 11.6;95%CI,3.6 - 37.2;p<0.001)、胸部感染(OR = 5.7;95%CI,1.8 - 18.3;p = 0.003)以及入院时高血糖(OR = 6;95%CI,1.5 - 25.6;p = 0.015)是增加急性中风患者死亡可能性的独立预测因素。入院时NIHSS基线失衡>20(OR = 8.9;95%CI,2.7 - 29;p<0.001)、第一天神经功能预后差(OR = 8.1;95%CI,2.2 - 29.6%;p = 0.002)和尿失禁(OR = 10.1;95%CI,5 - 20.6;p<0.001)是增加出院时功能状态差可能性的独立预测因素。

结论

吞咽困难、下肢运动功能障碍、尿失禁和糖尿病是增加急性中风患者医院感染可能性的独立预测因素。胸部感染显著增加住院期间死亡的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验