Suppr超能文献

水稻着丝粒反转录转座子通过RNA干扰进行转录和差异加工。

The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference.

作者信息

Neumann Pavel, Yan Huihuang, Jiang Jiming

机构信息

Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2007 Jun;176(2):749-61. doi: 10.1534/genetics.107.071902. Epub 2007 Apr 3.

Abstract

Retrotransposons consist of significant portions of many complex eukaryotic genomes and are often enriched in heterochromatin. The centromeric retrotransposon (CR) family in grass species is colonized in the centromeres and highly conserved among species that have been diverged for >50 MY. These unique characteristics have inspired scientists to speculate about the roles of CR elements in organization and function of centromeric chromatin. Here we report that the CRR (CR of rice) elements in rice are highly enriched in chromatin associated with H3K9me2, a hallmark for heterochromatin. CRR elements were transcribed in root, leaf, and panicle tissues, suggesting a constitutive transcription of this retrotransposon family. However, the overall transcription level was low and the CRR transcripts appeared to be derived from relatively few loci. The majority of the CRR transcripts had chimerical structures and contained only partial CRR sequences. We detected small RNAs (smRNAs) cognate to nonautonomous CRR1 (noaCRR1) and CRR1, but not CRR2 elements. This result was also confirmed by in silico analysis of rice smRNA sequences. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric heterochromatin.

摘要

逆转座子构成了许多复杂真核生物基因组的重要部分,并且常常在异染色质中富集。禾本科植物中的着丝粒逆转座子(CR)家族定位于着丝粒,在已经分化超过5000万年的物种间高度保守。这些独特的特征促使科学家们推测CR元件在着丝粒染色质的组织和功能中的作用。在此,我们报道水稻中的CRR(水稻的CR)元件在与H3K9me2相关的染色质中高度富集,H3K9me2是异染色质的一个标志。CRR元件在根、叶和穗组织中被转录,表明这个逆转座子家族的组成型转录。然而,整体转录水平较低,并且CRR转录本似乎来源于相对较少的位点。大多数CRR转录本具有嵌合结构,并且只包含部分CRR序列。我们检测到了与非自主CRR1(noaCRR1)和CRR1同源的小RNA(smRNA),但未检测到与CRR2元件同源的小RNA。水稻smRNA序列的电子分析也证实了这一结果。这些结果表明,不同的CRR亚家族可能在RNAi介导的着丝粒异染色质形成和维持途径中发挥不同的作用。

相似文献

1
The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference.
Genetics. 2007 Jun;176(2):749-61. doi: 10.1534/genetics.107.071902. Epub 2007 Apr 3.
2
Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice.
Mol Biol Evol. 2005 Apr;22(4):845-55. doi: 10.1093/molbev/msi069. Epub 2004 Dec 22.
3
A lineage-specific centromere retrotransposon in Oryza brachyantha.
Plant J. 2009 Dec;60(5):820-31. doi: 10.1111/j.1365-313X.2009.04005.x. Epub 2009 Aug 21.
4
Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11793-8. doi: 10.1073/pnas.0503863102. Epub 2005 Jul 22.
5
A molecular view of plant centromeres.
Trends Plant Sci. 2003 Dec;8(12):570-5. doi: 10.1016/j.tplants.2003.10.011.
7
Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize.
PLoS Biol. 2020 Jan 29;18(1):e3000582. doi: 10.1371/journal.pbio.3000582. eCollection 2020 Jan.
9
The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata.
Plant Physiol. 2005 Sep;139(1):306-15. doi: 10.1104/pp.105.064147. Epub 2005 Aug 19.
10
DDM1 Represses Noncoding RNA Expression and RNA-Directed DNA Methylation in Heterochromatin.
Plant Physiol. 2018 Jul;177(3):1187-1197. doi: 10.1104/pp.18.00352. Epub 2018 May 24.

引用本文的文献

2
Transposable elements: multifunctional players in the plant genome.
Front Plant Sci. 2024 Jan 4;14:1330127. doi: 10.3389/fpls.2023.1330127. eCollection 2023.
3
Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions.
Chromosoma. 2023 Sep;132(3):211-230. doi: 10.1007/s00412-023-00801-x. Epub 2023 Jul 4.
4
Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress.
Front Plant Sci. 2022 Dec 9;13:1064847. doi: 10.3389/fpls.2022.1064847. eCollection 2022.
6
Centromeric Transcription: A Conserved Swiss-Army Knife.
Genes (Basel). 2020 Aug 9;11(8):911. doi: 10.3390/genes11080911.
7
The epigenetic regulation of centromeres and telomeres in plants and animals.
Comp Cytogenet. 2020 Jul 7;14(2):265-311. doi: 10.3897/CompCytogen.v14i2.51895. eCollection 2020.
8
Epigenetics as an Evolutionary Tool for Centromere Flexibility.
Genes (Basel). 2020 Jul 16;11(7):809. doi: 10.3390/genes11070809.
9
Regulation of centromeric heterochromatin in the cell cycle by phosphorylation of histone H3 tyrosine 41.
Curr Genet. 2019 Aug;65(4):829-836. doi: 10.1007/s00294-019-00962-2. Epub 2019 Apr 8.
10
Centromere Repeats: Hidden Gems of the Genome.
Genes (Basel). 2019 Mar 16;10(3):223. doi: 10.3390/genes10030223.

本文引用的文献

1
CSRDB: a small RNA integrated database and browser resource for cereals.
Nucleic Acids Res. 2007 Jan;35(Database issue):D829-33. doi: 10.1093/nar/gkl991. Epub 2006 Dec 14.
2
Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice.
Mol Biol Evol. 2006 Dec;23(12):2505-20. doi: 10.1093/molbev/msl127. Epub 2006 Sep 20.
4
Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8709-14. doi: 10.1073/pnas.0508006103. Epub 2006 May 26.
5
Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats.
PLoS Genet. 2005 Dec;1(6):e79. doi: 10.1371/journal.pgen.0010079. Epub 2005 Dec 23.
6
Transcription and histone modifications in the recombination-free region spanning a rice centromere.
Plant Cell. 2005 Dec;17(12):3227-38. doi: 10.1105/tpc.105.037945. Epub 2005 Nov 4.
7
Non-coding RNAs: new players in eukaryotic biology.
Gene. 2005 Sep 12;357(2):83-94. doi: 10.1016/j.gene.2005.06.019.
8
Characterization of Dicer-deficient murine embryonic stem cells.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12135-40. doi: 10.1073/pnas.0505479102. Epub 2005 Aug 12.
9
Phylogenomic analysis of chromoviruses.
Cytogenet Genome Res. 2005;110(1-4):543-52. doi: 10.1159/000084987.
10
Identification and characterization of endogenous small interfering RNAs from rice.
Nucleic Acids Res. 2005 Aug 2;33(14):4443-54. doi: 10.1093/nar/gki758. Print 2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验