Ratei R, Karawajew L, Lacombe F, Jagoda K, Del Poeta G, Kraan J, De Santiago M, Kappelmayer J, Björklund E, Ludwig W-D, Gratama J W, Orfao A
Department of Hematology, Oncology and Tumor Immunology, Robert-Roessle-Clinic at the HELIOS Klinikum Berlin, Charité Medical School, Berlin, Germany.
Leukemia. 2007 Jun;21(6):1204-11. doi: 10.1038/sj.leu.2404675. Epub 2007 Apr 5.
Despite several recommendations for standardization of multiparameter flow cytometry (MFC) the number, specificity and combinations of reagents used by diagnostic laboratories for the diagnosis and classification of acute leukemias (AL) are still very diverse. Furthermore, the current diagnostic interpretation of flow cytometry readouts is influenced arbitrarily by individual experience and knowledge. We determined the potential value of a minimal four-color combination panel of 13 monoclonal antibodies (mAbs) with a CD45/sideward light scatter-gating strategy for a standardized MFC immunophenotyping of the clinically most relevant subgroups of AL. Bone marrow samples from 155 patients with acute myeloid leukemia (AML, n=79), B-cell precursor acute lymphoblastic leukemia (BCP-ALL, n=29), T-cell precursor acute lymphoblastic leukemia (T-ALL, n=12) and normal bone marrow donors (NBMD, n=35) were analyzed. A knowledge-based learning algorithm was generated by comparing the results of the minimal panel with the actual diagnosis, using discriminative function analysis. Correct classification of the test sample according to lineage, that is, BCP-ALL, T-ALL, AML and differentiation of NBMD was achieved in 97.2% of all cases with only six of the originally applied 13 mAbs of the panel. This provides evidence that discriminant function analysis can be utilized as a decision support system for interpretation of flow cytometry readouts.
尽管针对多参数流式细胞术(MFC)标准化提出了多项建议,但诊断实验室用于急性白血病(AL)诊断和分类的试剂数量、特异性及组合仍存在很大差异。此外,目前流式细胞术读数的诊断解读受个人经验和知识的随意影响。我们确定了一个由13种单克隆抗体(mAb)组成的最少四色组合面板,并采用CD45/侧向散射光门控策略,用于对AL临床上最相关亚组进行标准化MFC免疫表型分析的潜在价值。对155例急性髓系白血病(AML,n = 79)、B细胞前体急性淋巴细胞白血病(BCP-ALL,n = 29)、T细胞前体急性淋巴细胞白血病(T-ALL,n = 12)患者及正常骨髓供体(NBMD,n = 35)的骨髓样本进行了分析。通过使用判别函数分析,将最少面板的结果与实际诊断结果进行比较,生成了一种基于知识的学习算法。仅使用最初应用的13种mAb中的6种,在所有病例中97.2%实现了根据谱系对测试样本进行正确分类,即BCP-ALL、T-ALL、AML以及NBMD的区分。这证明判别函数分析可作为流式细胞术读数解读的决策支持系统。