D'Hernoncourt J, Zebib A, De Wit A
Nonlinear Physical Chemistry Unit and Center for Nonlinear Phenomena and Complex Systems, CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium.
Chaos. 2007 Mar;17(1):013109. doi: 10.1063/1.2405129.
Exothermic autocatalytic fronts traveling in the gravity field can be deformed by buoyancy-driven convection due to solutal and thermal contributions to changes in the density of the product versus the reactant solutions. We classify the possible instability mechanisms, such as Rayleigh-Benard, Rayleigh-Taylor, and double-diffusive mechanisms known to operate in such conditions in a parameter space spanned by the corresponding solutal and thermal Rayleigh numbers. We also discuss a counterintuitive instability leading to buoyancy-driven deformation of statically stable fronts across which a solute-light and hot solution lies on top of a solute-heavy and colder one. The mechanism of this chemically driven instability lies in the coupling of a localized reaction zone and of differential diffusion of heat and mass. Dispersion curves of the various cases are analyzed. A discussion of the possible candidates of autocatalytic reactions and experimental conditions necessary to observe the various instability scenarios is presented.
在重力场中传播的放热自催化前沿可能会因溶质和热对产物与反应物溶液密度变化的贡献而受到浮力驱动对流的影响而发生变形。我们在由相应的溶质瑞利数和热瑞利数所跨越的参数空间中,对已知在这种条件下起作用的可能的不稳定性机制进行了分类,例如瑞利 - 贝纳德、瑞利 - 泰勒和双扩散机制。我们还讨论了一种违反直觉的不稳定性,它会导致静态稳定前沿因浮力驱动而变形,在这种前沿中,溶质轻且热的溶液位于溶质重且冷的溶液之上。这种化学驱动不稳定性的机制在于局部反应区与热和质量的微分扩散之间的耦合。分析了各种情况的色散曲线。还讨论了自催化反应的可能候选者以及观察各种不稳定性情景所需的实验条件。