Suppr超能文献

小立碗藓中扩展蛋白超家族的图谱:与被子植物扩展蛋白的比较。

Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.

作者信息

Carey Robert E, Cosgrove Daniel J

机构信息

Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Ann Bot. 2007 Jun;99(6):1131-41. doi: 10.1093/aob/mcm044. Epub 2007 Apr 7.

Abstract

BACKGROUND AND AIMS

Expansins are plant cell wall loosening proteins important in a variety of physiological processes. They comprise a large superfamily of genes consisting of four families (EXPA, EXPB, EXLA and EXLB) whose evolutionary relationships have been well characterized in angiosperms, but not in basal land plants. This work attempts to connect the expansin superfamily in bryophytes with the evolutionary history of this superfamily in angiosperms.

METHODS

The expansin superfamily in Physcomitrella patens has been assembled from the Physcomitrella sequencing project data generated by the Joint Genome Institute and compared with angiosperm expansin superfamilies. Phylogenetic, motif, intron and distance analyses have been used for this purpose.

KEY RESULTS

A gene superfamily is revealed that contains similar numbers of genes as found in arabidopsis, but lacking EXLA or EXLB genes. This similarity in gene numbers exists even though expansin evolution in Physcomitrella diverged from the angiosperm line approx. 400 million years ago. Phylogenetic analyses suggest that there were a minimum of two EXPA genes and one EXPB gene in the last common ancestor of angiosperms and Physcomitrella. Motif analysis seems to suggest that EXPA protein function is similar in bryophytes and angiosperms, but that EXPB function may be altered.

CONCLUSIONS

The EXPA genes of Physcomitrella are likely to have maintained the same biochemical function as angiosperm expansins despite their independent evolutionary history. Changes seen at normally conserved residues in the Physcomitrella EXPB family suggest a possible change in function as one mode of evolution in this family.

摘要

背景与目的

扩展蛋白是植物细胞壁松弛蛋白,在多种生理过程中起重要作用。它们构成了一个由四个家族(EXPA、EXPB、EXLA和EXLB)组成的基因超家族,其进化关系在被子植物中已得到很好的表征,但在基部陆地植物中尚未明确。本研究旨在将苔藓植物中的扩展蛋白超家族与被子植物中该超家族的进化历史联系起来。

方法

从小立碗藓测序项目数据中组装出小立碗藓扩展蛋白超家族,该数据由联合基因组研究所生成,并与被子植物扩展蛋白超家族进行比较。为此采用了系统发育、基序、内含子和距离分析。

关键结果

揭示了一个基因超家族,其基因数量与拟南芥中的相似,但缺少EXLA或EXLB基因。尽管小立碗藓中的扩展蛋白进化在约4亿年前就与被子植物谱系分化,但基因数量仍存在这种相似性。系统发育分析表明,在被子植物和小立碗藓的最后共同祖先中至少有两个EXPA基因和一个EXPB基因。基序分析似乎表明,EXPA蛋白功能在苔藓植物和被子植物中相似,但EXPB功能可能发生了改变。

结论

尽管小立碗藓的EXPA基因有独立的进化历史,但可能仍保持着与被子植物扩展蛋白相同的生化功能。在小立碗藓EXPB家族中通常保守的残基处观察到的变化表明,该家族可能存在功能变化,这是进化的一种模式。

相似文献

1
Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins.
Ann Bot. 2007 Jun;99(6):1131-41. doi: 10.1093/aob/mcm044. Epub 2007 Apr 7.
2
Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.
J Plant Res. 2016 Mar;129(2):199-207. doi: 10.1007/s10265-015-0772-1. Epub 2015 Dec 8.
4
Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs.
J Plant Res. 2006 Jan;119(1):11-21. doi: 10.1007/s10265-005-0253-z. Epub 2006 Jan 13.
7
Expansin gene loss is a common occurrence during adaptation to an aquatic environment.
Plant J. 2020 Feb;101(3):666-680. doi: 10.1111/tpj.14572. Epub 2019 Nov 27.
9
Expansins in the bryophyte Physcomitrella patens.
Plant Mol Biol. 2002 Nov;50(4-5):789-802. doi: 10.1023/a:1019907207433.
10

引用本文的文献

1
Genome-Wide Identification, Phylogenetic and Expression Analysis of Expansin Gene Family in L.
Int J Mol Sci. 2024 Apr 25;25(9):4700. doi: 10.3390/ijms25094700.
2
Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii.
BMC Biol. 2023 Nov 6;21(1):244. doi: 10.1186/s12915-023-01743-7.
3
Quantitative cell biology of tip growth in moss.
Plant Mol Biol. 2021 Nov;107(4-5):227-244. doi: 10.1007/s11103-021-01147-7. Epub 2021 Apr 6.
5
ABA-Induced Vegetative Diaspore Formation in .
Front Plant Sci. 2019 Mar 19;10:315. doi: 10.3389/fpls.2019.00315. eCollection 2019.
6
Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.
J Plant Res. 2016 Mar;129(2):199-207. doi: 10.1007/s10265-015-0772-1. Epub 2015 Dec 8.
8
Development of schizogenous intercellular spaces in plants.
Front Plant Sci. 2015 Jul 2;6:497. doi: 10.3389/fpls.2015.00497. eCollection 2015.
9
Plant expansins: diversity and interactions with plant cell walls.
Curr Opin Plant Biol. 2015 Jun;25:162-72. doi: 10.1016/j.pbi.2015.05.014. Epub 2015 Jun 6.
10
A genome-wide analysis of the expansin genes in Malus × Domestica.
Mol Genet Genomics. 2014 Apr;289(2):225-36. doi: 10.1007/s00438-013-0796-y. Epub 2013 Dec 31.

本文引用的文献

1
Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14664-71. doi: 10.1073/pnas.0605979103. Epub 2006 Sep 19.
2
Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs.
J Plant Res. 2006 Jan;119(1):11-21. doi: 10.1007/s10265-005-0253-z. Epub 2006 Jan 13.
3
The expansin superfamily.
Genome Biol. 2005;6(12):242. doi: 10.1186/gb-2005-6-12-242. Epub 2005 Nov 28.
4
Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.
Plant J. 2005 Nov;44(3):409-19. doi: 10.1111/j.1365-313X.2005.02540.x.
5
Nomenclature for members of the expansin superfamily of genes and proteins.
Plant Mol Biol. 2004 May;55(3):311-4. doi: 10.1007/s11103-004-0158-6.
6
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.
BMC Bioinformatics. 2004 Aug 19;5:113. doi: 10.1186/1471-2105-5-113.
7
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.
Brief Bioinform. 2004 Jun;5(2):150-63. doi: 10.1093/bib/5.2.150.
8
Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family.
Plant Physiol. 2004 Jul;135(3):1552-64. doi: 10.1104/pp.104.039321. Epub 2004 Jul 9.
9
WebLogo: a sequence logo generator.
Genome Res. 2004 Jun;14(6):1188-90. doi: 10.1101/gr.849004.
10
STRUCTURE AND BIOGENESIS OF THE CELL WALLS OF GRASSES.
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:445-476. doi: 10.1146/annurev.arplant.47.1.445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验