Burrows Hugh D, Tapia María J, Silva Claudia L, Pais Alberto A C C, Fonseca Sofia M, Pina João, de Melo J Seixas, Wang Yujie, Marques Eduardo F, Knaapila Matti, Monkman Andrew P, Garamus Vasil M, Pradhan Swapna, Scherf Ullrich
Departamento de Química and Faculdade de Farmácia, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
J Phys Chem B. 2007 May 3;111(17):4401-10. doi: 10.1021/jp070100s. Epub 2007 Apr 11.
Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS-PFP) and cationic gemini surfactants alpha,omega-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m=12, s=2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS-PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2x10(-6) M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (approximately 2x10(-6)-10(-3) M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; approximately 10(-3) M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer-surfactant aggregates at the air-water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.
了解共轭聚电解质荧光行为的影响因素及其行为调控对于其作为功能材料的应用至关重要。研究了阴离子型聚{1,4 - 亚苯基 - [9,9 - 双(4 - 苯氧基 - 丁基磺酸盐)]芴 - 2,7 - 二基}共聚物(PBS - PFP)与阳离子型双子表面活性剂α,ω - (CmH2m + 1N+(CH3)2)2(CH2)s(Br-)2(m - s - m;m = 12,s = 2、3、5、6、10和12)在水溶液中的相互作用。选择这些表面活性剂是为了探究当表面活性剂上的间隔基长度与聚合物上的电荷间距相似时,带相反电荷的共轭聚电解质与双子表面活性剂之间是否会发生分子识别和自组装。在没有表面活性剂的情况下,PBS - PFP以聚集体形式存在。加入双子表面活性剂后这些聚集体会被破坏。然而,正如预期的那样,其行为强烈依赖于间隔基长度(s)。荧光测量显示出三种表面活性剂浓度区域:在低浓度(<2×10(-6) M)时发生猝灭,对于间隔基较小的12 - 2 - 12最为明显;在中等浓度(约2×10(-6) - 10(-3) M)时,荧光强度恒定,具有12个碳间隔基的12 - 12 - 12显示出最强的荧光;在临界胶束浓度(CMC;约10(-3) M)以上,在所有情况下发射强度均增加,对于间隔基适中的12 - 5 - 12和12 - 6 - 12增加幅度最大,此时间隔基长度与聚合物上单体单元之间的距离最匹配。对于间隔基长度更长的表面活性剂,低于CMC浓度时的表面张力测量结果表明在气 - 水界面存在聚合物 - 表面活性剂聚集体,这可能反映了疏水性的增加。在CMC以上,12 - 6 - 12体系的小角中子散射实验表明,无论是纯表面活性剂还是聚电解质/双子表面活性剂混合物都存在球形聚集体。分子动力学模拟有助于合理解释这些观察结果,并表明静电相互作用和疏水相互作用之间存在非常精细的平衡。对于间隔基最短的12 - 2 - 12,库仑相互作用占主导,而对于间隔基最长的12 - 12 - 12,驱动力涉及疏水相互作用。定性地说,在间隔基适中的12 - 5 - 12和12 - 6 - 12体系中,观察到了库仑相互作用和疏水相互作用之间的最佳平衡,这解释了它们强烈的荧光增强现象。