Willson Melina L, Bower Adrian J, Sherrard Rachel M
School of Veterinary and Biomedical Sciences, James Cook University, Australia.
Eur J Neurosci. 2007 Mar;25(5):1475-83. doi: 10.1111/j.1460-9568.2007.05410.x.
The adult mammalian central nervous system displays limited reinnervation and recovery from trauma. However, during development, post-lesion plasticity may generate alternative paths, thus providing models to investigate reinnervation and repair. After unilateral transection of the neonatal rat olivocerebellar path (pedunculotomy), axons from the remaining inferior olive reinnervate the denervated hemicerebellum. Unfortunately, reinnervation to the cerebellar hemisphere is incomplete; therefore, its capacity to mediate hemispheric function (navigation) is unknown. We studied sensorimotor control and spatial cognition of rats with and without transcommissural reinnervation using simple (bridge and ladder) and complex (wire) locomotion tests and the Morris water maze (hidden, probe and cued paradigms). Although pedunculotomized animals completed locomotory tasks more slowly than controls, all groups performed equally in the cued maze, indicating that lesioned animals could orientate to and reach the platform. In animals pedunculotomized on day 3 (Px3), which develop olivocerebellar reinnervation, final spatial knowledge was as good as controls, although they learned more erratically, failing to retain all information from one day to the next. By contrast, animals pedunculotomized on day 11 (Px11), which do not develop reinnervation, did not learn the task, taking less direct routes and more time to reach the platform than controls. In the probe test, control and Px3, but not Px11, animals swam directly to the remembered location. Furthermore, the amount of transcommissural reinnervation to the denervated hemisphere correlated directly with spatial performance. These results show that transcommissural olivocerebellar reinnervation is associated with spatial learning, i.e. even partial circuit repair confers significant functional benefit.
成年哺乳动物的中枢神经系统在创伤后显示出有限的神经再支配和恢复能力。然而,在发育过程中,损伤后的可塑性可能会产生替代路径,从而为研究神经再支配和修复提供模型。在新生大鼠橄榄小脑通路单侧横断(脑桥切断术)后,剩余下橄榄核的轴突会重新支配去神经支配的小脑半球。不幸的是,对小脑半球的神经再支配并不完全;因此,其介导半球功能(导航)的能力尚不清楚。我们使用简单(桥和梯子)和复杂(钢丝)运动测试以及莫里斯水迷宫(隐藏、探针和线索范式)研究了有无经连合神经再支配的大鼠的感觉运动控制和空间认知。尽管脑桥切断术动物完成运动任务的速度比对照组慢,但所有组在线索迷宫中的表现相同,这表明损伤动物能够定位并到达平台。在出生后第3天进行脑桥切断术(Px3)的动物中,其发展出了橄榄小脑神经再支配,最终的空间知识与对照组一样好,尽管它们学习得更不稳定,无法将所有信息从一天保留到下一天。相比之下,出生后第11天进行脑桥切断术(Px11)的动物没有发展出神经再支配,没有学会任务,比对照组采用更不直接的路线且花费更多时间到达平台。在探针测试中,对照组和Px3组动物直接游向记忆位置,而Px11组动物则不然。此外,去神经支配半球的经连合神经再支配量与空间表现直接相关。这些结果表明,经连合橄榄小脑神经再支配与空间学习相关,即即使部分回路修复也能带来显著的功能益处。