Suppr超能文献

微阵列数据中的技术噪声水平有多高?

How high is the level of technical noise in microarray data?

作者信息

Klebanov Lev, Yakovlev Andrei

机构信息

Department of Probability and Statistics, Charles University, Sokolovska 83, Praha-8, CZ-18675, Czech Republic.

出版信息

Biol Direct. 2007 Apr 11;2:9. doi: 10.1186/1745-6150-2-9.

Abstract

BACKGROUND

Microarray gene expression data are commonly perceived as being extremely noisy because of many imperfections inherent in the current technology. A recent study conducted by the MicroArray Quality Control (MAQC) Consortium and published in Nature Biotechnology provides a unique opportunity to probe into the true level of technical noise in such data.

RESULTS

In the present report, the MAQC study is reanalyzed in order to quantitatively assess measurement errors inherent in high-density oligonucleotide array technology (Affymetrix platform). The level of noise is directly estimated from technical replicates of gene expression measurements in the absence of biological variability. For each probe set, the magnitude of random fluctuations across technical replicates is characterized by the standard deviation of the corresponding log-expression signal. The resultant standard deviations appear to be uniformly small and symmetrically distributed across probe sets. The observed noise level does not cause any tangible bias in estimated pair-wise correlation coefficients, the latter being particularly prone to its presence in microarray data.

CONCLUSION

The reported analysis strongly suggests that, contrary to popular belief, the random fluctuations of gene expression signals caused by technical noise are quite low and the effect of such fluctuations on the results of statistical inference from Affymetrix GeneChip microarray data is negligibly small.

摘要

背景

由于当前技术存在许多固有缺陷,微阵列基因表达数据通常被认为噪声极大。微阵列质量控制(MAQC)联盟最近开展并发表在《自然·生物技术》上的一项研究,提供了一个独特的机会来探究此类数据中技术噪声的真实水平。

结果

在本报告中,对MAQC研究进行了重新分析,以定量评估高密度寡核苷酸阵列技术(Affymetrix平台)中固有的测量误差。在不存在生物学变异性的情况下,直接从基因表达测量的技术重复中估计噪声水平。对于每个探针集,通过相应对数表达信号的标准差来表征技术重复间随机波动的幅度。所得标准差似乎普遍较小,且在各探针集间呈对称分布。观察到的噪声水平在估计的成对相关系数中未引起任何明显偏差,而后者在微阵列数据中尤其容易受到噪声的影响。

结论

报告的分析有力地表明,与普遍看法相反,技术噪声引起的基因表达信号随机波动相当低,且这种波动对Affymetrix基因芯片微阵列数据统计推断结果的影响小到可以忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验