Brandt Nicola, Franke Kristin, Rasin Mladen-Roko, Baumgart Jan, Vogt Johannes, Khrulev Sergey, Hassel Burkhard, Pohl Elena E, Sestan Nenad, Nitsch Robert, Schumacher Stefan
Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
EMBO J. 2007 May 2;26(9):2371-86. doi: 10.1038/sj.emboj.7601680. Epub 2007 Apr 12.
The development of dendritic arborizations and spines is essential for neuronal information processing, and abnormal dendritic structures and/or alterations in spine morphology are consistent features of neurons in patients with mental retardation. We identify the neural EGF family member CALEB/NGC as a critical mediator of dendritic tree complexity and spine formation. Overexpression of CALEB/NGC enhances dendritic branching and increases the complexity of dendritic spines and filopodia. Genetic and functional inactivation of CALEB/NGC impairs dendritic arborization and spine formation. Genetic manipulations of individual neurons in an otherwise unaffected microenvironment in the intact mouse cortex by in utero electroporation confirm these results. The EGF-like domain of CALEB/NGC drives both dendritic branching and spine morphogenesis. The phosphatidylinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway and protein kinase C (PKC) are important for CALEB/NGC-induced stimulation of dendritic branching. In contrast, CALEB/NGC-induced spine morphogenesis is independent of PI3K but depends on PKC. Thus, our findings reveal a novel switch of specificity in signaling leading to neuronal process differentiation in consecutive developmental events.
树突分支和棘突的发育对于神经元信息处理至关重要,而树突结构异常和/或棘突形态改变是智力发育迟缓患者神经元的一致特征。我们确定神经表皮生长因子家族成员CALEB/NGC是树突树复杂性和棘突形成的关键调节因子。CALEB/NGC的过表达增强树突分支,并增加树突棘和丝状伪足的复杂性。CALEB/NGC的基因和功能失活损害树突分支和棘突形成。通过子宫内电穿孔对完整小鼠皮质中原本未受影响的微环境中的单个神经元进行基因操作证实了这些结果。CALEB/NGC的表皮生长因子样结构域驱动树突分支和棘突形态发生。磷脂酰肌醇3激酶(PI3K)-蛋白激酶B(Akt)-雷帕霉素哺乳动物靶蛋白(mTOR)信号通路和蛋白激酶C(PKC)对CALEB/NGC诱导的树突分支刺激很重要。相比之下,CALEB/NGC诱导的棘突形态发生不依赖于PI3K,但依赖于PKC。因此,我们的研究结果揭示了在连续发育事件中导致神经元突起分化的信号传导中一种新的特异性转换。