Neumann Marc B, von Gunten Urs, Gujer Willi
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
Water Res. 2007 Jun;41(11):2371-8. doi: 10.1016/j.watres.2007.02.022. Epub 2007 Apr 12.
Predicting the disinfection performance of a full-scale reactor in drinking water treatment is associated with considerable uncertainty. In view of quantitative risk analysis, this study assesses the uncertainty involved in predicting inactivation of Cryptosporidium parvum oocysts for an ozone reactor treating lake water. A micromodel is suggested which quantifies inactivation by stochastic sampling from density distributions of ozone exposure and lethal ozone dose. The ozone exposure distribution is computed with a tank in series model that is derived from tracer data and measurements of flow, ozone concentration and ozone decay. The distribution of lethal ozone doses is computed with a delayed Chick-Watson model which was calibrated by Sivaganesan and Marinas [2005. Development of a Ct equation taking into consideration the effect of Lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone. Water Res. 39(11), 2429-2437] utilizing a large number of inactivation studies. Parameter uncertainty is propagated with Monte Carlo simulation and the probability of attaining given inactivation levels is assessed. Regional sensitivity analysis based on variance decomposition ranks the influence of parameters in determining the variance of the model result. The lethal dose model turns out to be responsible for over 90% of the output variance. The entire analysis is re-run for three exemplary scenarios to assess the robustness of the results in view of changing inputs, differing operational parameters or revised assumptions about the appropriate model. We argue that the suggested micromodel is a versatile approach for characterization of disinfection reactors. The scheme developed for uncertainty assessment is optimal for model diagnostics and effectively supports the management of uncertainty.
预测饮用水处理中全尺寸反应器的消毒性能存在很大的不确定性。从定量风险分析的角度来看,本研究评估了预测臭氧反应器处理湖水时隐孢子虫卵囊失活所涉及的不确定性。提出了一种微观模型,该模型通过从臭氧暴露和致死臭氧剂量的密度分布中进行随机抽样来量化失活情况。臭氧暴露分布是通过串联水箱模型计算得出的,该模型源自示踪剂数据以及流量、臭氧浓度和臭氧衰减的测量值。致死臭氧剂量的分布是通过延迟的Chick-Watson模型计算得出的,该模型由Sivaganesan和Marinas [2005年。考虑批次变异性对隐孢子虫卵囊臭氧灭活影响的Ct方程的开发。《水研究》39(11),2429 - 2437]利用大量灭活研究进行了校准。参数不确定性通过蒙特卡罗模拟进行传播,并评估达到给定失活水平的概率。基于方差分解的区域敏感性分析对参数在确定模型结果方差方面的影响进行了排序。结果表明,致死剂量模型对超过90%的输出方差负责。针对三种典型情况重新运行了整个分析,以鉴于输入变化、不同的运行参数或关于合适模型的修订假设来评估结果的稳健性。我们认为所提出的微观模型是一种用于表征消毒反应器的通用方法。为不确定性评估开发的方案对于模型诊断是最优的,并有效地支持了不确定性的管理。