Inbar L, Lapidot A
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
J Bacteriol. 1991 Dec;173(24):7790-801. doi: 10.1128/jb.173.24.7790-7801.1991.
Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C enrichment and isotopomer population, measured by nuclear magnetic resonance and gas chromatography-mass spectrometry, of the actinomycin D peptide ring enabled us to specify the origins of the five amino acids of actinomycin D. Threonine and proline exhibited isotopomer populations similar to that of the extracellular L-[13C]glutamate, indicating that protein catabolism is the origin of their 13C label, whereas the isotopomer populations of sarcosine and N-methylvaline were similar to those of the new intracellular pool of S. parvulus that originated from D-[U-13C]fructose during the production of actinomycin D.
通过¹³C核磁共振监测了微小链霉菌细胞悬浮液中的果糖和谷氨酸代谢。实验针对在含有D-[U-¹³C]果糖、L-[¹³C]谷氨酸或L-[U-¹³C]天冬氨酸以及未标记前体的生长培养基中,用各种¹³C源培养的细胞进行,以比较微小链霉菌细胞在细胞生命周期不同阶段的细胞内库。果糖进入细胞的转运本质上是双相的;在快速转运期间,甘露醇、果糖和6-磷酸葡萄糖在细胞内积累,而在果糖的被动扩散期间,细胞内碳水化合物库主要由海藻糖(1,1'-α-α-D-葡萄糖)组成。细胞内中间产物对果糖激酶活性的调节可能在微小链霉菌的果糖分解代谢中起重要作用。微小链霉菌中的转醛醇酶活性是根据在含有L-[U-¹³C]天冬氨酸或L-[U-¹³C]谷氨酸的培养基中生长的细胞获得的海藻糖碳的¹³C核磁共振标记模式来确定的。二糖中只有碳4、5和6被标记。对海藻糖碳的同位素异构体分析使我们得出结论,通过反向糖酵解途径,即3-磷酸甘油醛与磷酸二羟丙酮的缩合,对海藻糖中观察到的¹³C标记葡萄糖单元的贡献至多很小。戊糖途径和转醛醇酶活性可以解释海藻糖4,5,6-¹³C₃的标记模式。此外,转醛醇酶活性将L-[U-¹³C]天冬氨酸的¹³C标记转移到海藻糖C4、C5和C6的不同同位素异构体中,这使我们能够计算从草酰乙酸通过糖异生和通过三羧酸循环的相对通量。这两个通量的比率约为1。然而,微小链霉菌中海藻糖合成的主要碳源是果糖,而不是谷氨酸或天冬氨酸。通过核磁共振和气相色谱-质谱法测量的放线菌素D肽环中¹³C的富集和同位素异构体群体,使我们能够确定放线菌素D的五个氨基酸的来源。苏氨酸和脯氨酸的同位素异构体群体与细胞外L-[¹³C]谷氨酸的相似,表明蛋白质分解代谢是它们¹³C标记的来源,而肌氨酸和N-甲基缬氨酸的同位素异构体群体与微小链霉菌在放线菌素D生产过程中源自D-[U-¹³C]果糖的新细胞内库的相似。