Suppr超能文献

糖原磷酸化酶抑制剂可在有意识大鼠的感觉刺激过程中选择性提高大脑局部葡萄糖利用率:对糖原周转的影响

A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover.

作者信息

Dienel Gerald A, Ball Kelly K, Cruz Nancy F

机构信息

Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

出版信息

J Neurochem. 2007 Jul;102(2):466-78. doi: 10.1111/j.1471-4159.2007.04595.x. Epub 2007 Apr 17.

Abstract

Glycogen is degraded during brain activation but its role and contribution to functional energetics in normal activated brain have not been established. In the present study, glycogen utilization in brain of normal conscious rats during sensory stimulation was assessed by three approaches, change in concentration, release of (14)C from pre-labeled glycogen and compensatory increase in utilization of blood glucose (CMR(glc)) evoked by treatment with a glycogen phosphorylase inhibitor. Glycogen level fell in cortex, (14)C release increased in three structures and inhibitor treatment caused regionally selective compensatory increases in CMR(glc) over and above the activation-induced rise in vehicle-treated rats. The compensatory rise in CMR(glc) was highest in sensory-parietal cortex where it corresponded to about half of the stimulus-induced rise in CMR(glcf) in vehicle-treated rats; this response did not correlate with metabolic rate, stimulus-induced rise in CMR(glc) or sequential station in sensory pathway. Thus, glycogen is an active fuel for specific structures in normal activated brain, not simply an emergency fuel depot and flux-generated pyruvate greatly exceeded net accumulation of lactate or net consumption of glycogen during activation. The metabolic fate of glycogen is unknown, but adding glycogen to the fuel consumed during activation would contribute to a fall in CMR(O2)/CMR(glc) ratio.

摘要

糖原在大脑激活过程中会被降解,但其在正常激活的大脑中对功能能量学的作用和贡献尚未明确。在本研究中,通过三种方法评估了正常清醒大鼠在感觉刺激期间大脑中糖原的利用情况,即浓度变化、预标记糖原释放的(14)C以及糖原磷酸化酶抑制剂处理引起的血糖利用(CMR(glc))的代偿性增加。皮质中的糖原水平下降,三个结构中的(14)C释放增加,抑制剂处理导致在给予溶媒的大鼠激活诱导升高基础上,CMR(glc)出现区域选择性代偿性增加。CMR(glc)的代偿性升高在感觉顶叶皮质中最高,约相当于给予溶媒的大鼠刺激诱导的CMR(glcf)升高的一半;这种反应与代谢率、刺激诱导的CMR(glc)升高或感觉通路中的顺序位点均无关。因此,糖原是正常激活大脑中特定结构的活性燃料,而不仅仅是应急燃料库,并且激活过程中通量产生的丙酮酸大大超过乳酸的净积累或糖原的净消耗。糖原的代谢命运尚不清楚,但在激活过程中消耗的燃料中添加糖原会导致CMR(O2)/CMR(glc)比值下降。

相似文献

5
Contributions of glycogen to astrocytic energetics during brain activation.
Metab Brain Dis. 2015 Feb;30(1):281-98. doi: 10.1007/s11011-014-9493-8. Epub 2014 Feb 12.
6
8
Impact of a glycogen phosphorylase inhibitor and metformin on basal and glucagon-stimulated hepatic glucose flux in conscious dogs.
J Pharmacol Exp Ther. 2011 Jun;337(3):610-20. doi: 10.1124/jpet.110.177899. Epub 2011 Mar 1.
10
Astrocyte activation in vivo during graded photic stimulation.
J Neurochem. 2007 Nov;103(4):1506-22. doi: 10.1111/j.1471-4159.2007.04859.x. Epub 2007 Aug 23.

引用本文的文献

2
Neural Metabolic Networks: Key Elements of Healthy Brain Function.
J Neurochem. 2025 Jun;169(6):e70084. doi: 10.1111/jnc.70084.
3
The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances.
J Neurochem. 2025 Mar;169(3):e70029. doi: 10.1111/jnc.70029.
4
Methionine Sulfoximine as a Tool for Studying Temporal Lobe Epilepsy: Initiator, Developer, Attenuator.
Neurochem Res. 2025 Jan 22;50(2):84. doi: 10.1007/s11064-024-04329-z.
6
The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation.
J Neurochem. 2024 May;168(5):533-554. doi: 10.1111/jnc.16004. Epub 2023 Nov 6.
8
Metabolic aspects of genetic ion channel epilepsies.
J Neurochem. 2024 Dec;168(12):3911-3935. doi: 10.1111/jnc.15938. Epub 2023 Aug 18.
9
Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases.
CNS Neurosci Ther. 2023 Jan;29(1):24-36. doi: 10.1111/cns.13982. Epub 2022 Oct 3.
10
From a Demand-Based to a Supply-Limited Framework of Brain Metabolism.
Front Integr Neurosci. 2022 Apr 1;16:818685. doi: 10.3389/fnint.2022.818685. eCollection 2022.

本文引用的文献

2
Human brain glycogen content and metabolism: implications on its role in brain energy metabolism.
Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E946-51. doi: 10.1152/ajpendo.00424.2006. Epub 2006 Nov 28.
3
Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
J Cereb Blood Flow Metab. 2007 Feb;27(2):219-49. doi: 10.1038/sj.jcbfm.9600343. Epub 2006 Jul 12.
5
Astrocyte activation in working brain: energy supplied by minor substrates.
Neurochem Int. 2006 May-Jun;48(6-7):586-95. doi: 10.1016/j.neuint.2006.01.004. Epub 2006 Mar 2.
6
Neuronal-glial glucose oxidation and glutamatergic-GABAergic function.
J Cereb Blood Flow Metab. 2006 Jul;26(7):865-77. doi: 10.1038/sj.jcbfm.9600263. Epub 2006 Jan 11.
7
Astrocyte-mediated control of cerebral blood flow.
Nat Neurosci. 2006 Feb;9(2):260-7. doi: 10.1038/nn1623. Epub 2005 Dec 25.
9
Astrocytes, from brain glue to communication elements: the revolution continues.
Nat Rev Neurosci. 2005 Aug;6(8):626-40. doi: 10.1038/nrn1722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验