Suppr超能文献

改进遗传图谱估计:一种基于荟萃分析的方法。

Improving estimates of genetic maps: a meta-analysis-based approach.

作者信息

Stewart William C L

机构信息

Department of Biostatistics, Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.

出版信息

Genet Epidemiol. 2007 Jul;31(5):408-16. doi: 10.1002/gepi.20221.

Abstract

Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore, when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to investigators who need map positions for markers not contained in publicly available maps, and to those who wish to minimize the negative effects of inaccurate maps.

摘要

不准确的遗传(或连锁)图谱会降低检测连锁的能力,增加I型错误,并扭曲单倍型和关系推断。为了提高现有图谱的准确性,我提出了一种基于荟萃分析的方法,该方法将独立的图谱估计值合并为连锁图谱的单一估计值。无论图谱估计是否使用相同的标记集,该方法都利用每个独立图谱估计值的方差来有效地合并它们。与合并基因型数据的联合分析相比,该方法具有吸引力的原因有三个:(1)当合并数据同质时,它与最大似然图谱估计具有相当的效率;(2)相对于现有的图谱估计方法,当合并数据异质时,它可以提高效率;(3)它避免了合并人类受试者数据的实际困难。基于模拟两个真实数据集的数据,该方法可以减少全基因组连锁扫描中常用的连锁图谱的抽样变异。此外,当独立的图谱估计也是最大似然估计时,该方法的性能与使用CRIMAP程序估计时一样好或更好。由于图谱的方差估计可能并非总是可用,我展示了三种不同方差估计器的可行性。总体而言,该方法对于那些需要未包含在公开可用图谱中的标记的图谱位置的研究人员,以及那些希望将不准确图谱的负面影响降至最低的研究人员应该是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验