Gingras Jacinthe, Rassadi Siamak, Cooper Ellis, Ferns Michael
Center for Research in Neuroscience, McGill University Health Center, Montreal, QC, H3G 1A4, Canada.
Dev Neurobiol. 2007 Apr;67(5):521-34. doi: 10.1002/dneu.20304.
Neuronal synapse formation is a multistep process regulated by several pre- and postsynaptic adhesion and signaling proteins. Recently, we found that agrin acts as one such synaptogenic factor at neuronal synapses in the PNS by demonstrating that structural synapse formation is impaired in the superior cervical ganglia (SCG) of z+ agrin-deficient mice and in SCG cultures derived from those animals. Here, we tested whether synaptic function is defective in agrin-null (AGD-/-) ganglia and began to define agrin's mechanism of action. Our electrophysiological recordings of compound action potentials showed that presynaptic stimulation evoked action potentials in approximately 40% of AGD-/- ganglionic neurons compared to 90% of wild-type neurons; moreover, transmission could not be potentiated as in wild-type or z+ agrin-deficient ganglia. Intracellular recordings also showed that nerve-evoked excitatory postsynaptic potentials in AGD-/- neurons were only 1/3 the size of those in wild-type neurons and mostly subthreshold. Consistent with these defects in transmission, we found an approximately 40-50% decrease in synapse number in AGD-/- ganglia and cultures, and decreased levels of differentiation at the residual synapses in culture. Furthermore, surface levels of acetylcholine receptors (AChRs) were equivalent in cultured AGD-/- and wild-type neurons, and depolarization reduced the synaptic localization of AChRs in AGD-/- but not wild-type neurons. These findings provide the first direct demonstration that agrin is required for proper structural and functional development of an interneuronal synapse in vivo. Moreover, they suggest a novel role for agrin, in stabilizing the postsynaptic density of nAChR at nascent neuronal synapses.
神经元突触形成是一个由多种突触前和突触后黏附及信号蛋白调控的多步骤过程。最近,我们发现聚集蛋白(agrin)在周围神经系统的神经元突触中作为一种突触生成因子发挥作用,通过证明在z +聚集蛋白缺陷小鼠的颈上神经节(SCG)以及源自这些动物的SCG培养物中,结构性突触形成受损。在此,我们测试了聚集蛋白缺失(AGD-/-)神经节中的突触功能是否存在缺陷,并开始确定聚集蛋白的作用机制。我们对复合动作电位的电生理记录表明,与90%的野生型神经元相比,突触前刺激在约40%的AGD-/-神经节神经元中诱发动作电位;此外,与野生型或z +聚集蛋白缺陷神经节不同,其传递不能被增强。细胞内记录还显示,AGD-/-神经元中神经诱发的兴奋性突触后电位仅为野生型神经元的1/3大小,且大多低于阈值。与这些传递缺陷一致,我们发现在AGD-/-神经节和培养物中突触数量减少了约40 - 50%,并且培养物中残余突触的分化水平降低。此外,培养的AGD-/-和野生型神经元中乙酰胆碱受体(AChRs)的表面水平相当,去极化减少了AGD-/-神经元而非野生型神经元中AChRs的突触定位。这些发现首次直接证明聚集蛋白是体内中间神经元突触正常结构和功能发育所必需的。此外,它们还表明聚集蛋白在稳定新生神经元突触处烟碱型乙酰胆碱受体(nAChR)的突触后密度方面具有新的作用。