Suppr超能文献

通过具有连续吸引子的神经网络动力学进行信息的上下文相关检索。

Context-dependent retrieval of information by neural-network dynamics with continuous attractors.

作者信息

Tsuboshita Yukihiro, Okamoto Hiroshi

机构信息

Corporate Research Group, Fuji Xerox Co., Ltd, 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0157, Japan.

出版信息

Neural Netw. 2007 Aug;20(6):705-13. doi: 10.1016/j.neunet.2007.02.002. Epub 2007 Mar 18.

Abstract

Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.

摘要

传统上,神经网络中的记忆检索是由具有离散吸引子的动态系统来描述的。然而,最近关于分级持续活动的神经生理学发现表明,大脑中的记忆检索更有可能由具有连续吸引子的动态系统来描述。为了探究连续吸引子动力学能够实现何种信息处理,我们研究了由双稳态神经元网络从文档中提取关键词的过程,该网络能产生强大的连续吸引子。给定一个术语关联网络,由该网络中神经元激活传播所引导的连续吸引子似乎代表了那些表达在网络激活模式初始状态中编码的文档潜在含义的关键词。认知心理学中的一个主要假设是,长期记忆存储在类似于术语关联网络的网络结构中。我们的结果表明,具有连续吸引子的神经网络动力学进行的关键词提取可能象征性地代表了大脑中从长期记忆进行上下文相关短期记忆检索的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验