Suppr超能文献

使用二维分子描述符和二元定量构效关系方法评估c-Jun氨基末端激酶3(JNK3)抑制剂的效力。

Assessing potency of c-Jun N-terminal kinase 3 (JNK3) inhibitors using 2D molecular descriptors and binary QSAR methodology.

作者信息

Ijjaali Ismail, Petitet François, Dubus Elodie, Barberan Olivier, Michel André

机构信息

Aureus Pharma, 174 Quai de Jemmapes, Paris, France.

出版信息

Bioorg Med Chem. 2007 Jun 15;15(12):4256-64. doi: 10.1016/j.bmc.2007.03.062. Epub 2007 Mar 24.

Abstract

JNK3 signaling pathway is gaining interest due to its involvement in many neurological disorders. The purpose of this study was to explore for the first time the use of a large and diverse dataset in combination with binary QSAR methodology for predicting JNK3 activity class. Data were extracted from Aureus Pharma' AurSCOPE Kinase knowledge database and active or inactive classes were assigned to ligands based on IC50 biological activity. Two sets of 2D molecular descriptors (P_VSA and BCUT) were used to build models using different biological activity thresholds. The design of the models was preceded by the evaluation of the chemical space covered by the datasets and an assessment of its chemical diversity. The best model was found using a 100 nM IC50 threshold with surface-based P_VSA descriptors. This binary QSAR model reached an overall accuracy of 98% and a leave-one-out cross-validated accuracy of 94%. Most relevant descriptors were found to encode size and hydrophobic interactions. These derived models can be useful for screening chemical libraries in the search for new JNK3 inhibitors.

摘要

JNK3信号通路因其与多种神经疾病有关而备受关注。本研究的目的是首次探索结合使用大量多样的数据集与二元定量构效关系(QSAR)方法来预测JNK3活性类别。数据从奥里斯制药公司的AurSCOPE激酶知识数据库中提取,并根据IC50生物活性为配体指定活性或非活性类别。使用两组二维分子描述符(P_VSA和BCUT),通过不同的生物活性阈值构建模型。在模型设计之前,先评估数据集覆盖的化学空间并评估其化学多样性。使用基于表面的P_VSA描述符,在IC50阈值为100 nM时发现了最佳模型。该二元QSAR模型的总体准确率达到98%,留一法交叉验证准确率为94%。发现最相关的描述符编码大小和疏水相互作用。这些衍生模型可用于筛选化学文库以寻找新的JNK3抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验