Herrera Katherine, Cahoon Rebecca E, Kumaran Sangaralingam, Jez Joseph
Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
J Biol Chem. 2007 Jun 8;282(23):17157-65. doi: 10.1074/jbc.M700804200. Epub 2007 Apr 22.
Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.
谷胱甘肽对于维持细胞内氧化还原环境至关重要,它由谷胱甘肽合成酶(GS)利用γ-谷氨酰半胱氨酸、甘氨酸和ATP合成。为了研究真核生物GS的反应机制,对24个拟南芥GS(AtGS)突变体进行了动力学表征。在γ-谷氨酰半胱氨酸/谷胱甘肽结合位点内,S153A和S155A突变体在动力学参数上的变化小于4倍,而结合位点远端的Glu-220(E220A/E220Q)、Gln-226(Q226A/Q226N)和Arg-274(R274A/R274K)突变导致γ-谷氨酰半胱氨酸的K(m)值增加24 - 180倍。与ATP相互作用的多个残基(K313M、K367M和E429A/E429Q)或与ATP配位镁离子的残基(E148A/E148Q、N150A/N150D和E371A)的取代导致蛋白质无活性,这是通过荧光滴定确定的,因为核苷酸结合受损。ATP结合位点的其他突变(E371Q、N376A和K456M)导致对ATP的亲和力降低超过30倍,周转率降低高达80倍。位于两个底物结合位点界面的Arg-132和Arg-454的突变对酶活性的影响不同。R132A突变体无活性,R132K突变体使k(cat)降低200倍;然而,这两个突变体与ATP结合的K(d)值与野生型酶相似。R454K突变体的动力学参数变化最小,但R454A突变体的k(cat)降低了160倍。此外,R132K、R454A和R454K突变使甘氨酸的K(m)值升高至11倍。拟南芥GS以及Arg-132和Arg-454突变体的pH谱和溶剂氘同位素效应的比较也表明这些残基具有不同的机制作用。基于这些结果,提出了真核生物GS的催化机制。