Pick Elah, Lau On-Sun, Tsuge Tomohiko, Menon Suchithra, Tong Yingchun, Dohmae Naoshi, Plafker Scott M, Deng Xing Wang, Wei Ning
Department of Molecualr, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
Mol Cell Biol. 2007 Jul;27(13):4708-19. doi: 10.1128/MCB.02432-06. Epub 2007 Apr 23.
DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.
DET1(去黄化1)是植物光反应的重要负调控因子,它是拟南芥CDD复合物的一个组成部分,该复合物包含DDB1和COP10泛素E2变体。人类DET1最近被分离出来,作为与DDB1和Cul4A相关的因子之一,同时还有一系列含WD40的Cul4A - DDB1泛素连接酶的底物受体。然而,DET1在生化行为和活性方面与cullin E3连接酶的传统底物受体不同。在这里,我们报告哺乳动物DET1形成稳定的DDD - E2复合物,由DDB1、DDA1(与DET1、DDB1相关的1)和典型泛素结合酶UBE2E组的一个成员组成。DDD - E2复合物与多种泛素E3连接酶相互作用。我们表明,E2成分一旦与DDD核心结合就不能维持泛素硫酯键,这使得哺乳动物的DDD - E2等同于拟南芥的CDD复合物。虽然游离的UBE2E - 3具有活性并能够增强UbcH5/Cul4A活性,但DDD核心在体外特异性抑制Cul4A依赖的多聚泛素链组装。在培养细胞中过表达DET1可抑制紫外线诱导的CDT1降解。这些发现表明,保守的DET1复合物通过一种新机制调节Cul4A功能。