Suppr超能文献

核糖体蛋白产生与前体核糖体RNA加工之间的潜在联系。

Potential interface between ribosomal protein production and pre-rRNA processing.

作者信息

Rudra Dipayan, Mallick Jaideep, Zhao Yu, Warner Jonathan R

机构信息

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Mol Cell Biol. 2007 Jul;27(13):4815-24. doi: 10.1128/MCB.02062-06. Epub 2007 Apr 23.

Abstract

It has become clear that in Saccharomyces cerevisiae the transcription of ribosomal protein genes, which makes up a major proportion of the total transcription by RNA polymerase II, is controlled by the interaction of three transcription factors, Rap1, Fhl1, and Ifh1. Of these, only Rap1 binds directly to DNA and only Ifh1 is absent when transcription is repressed. We have examined further the nature of this interaction and find that Ifh1 is actually associated with at least two complexes. In addition to its association with Rap1 and Fhl1, Ifh1 forms a complex (CURI) with casein kinase 2 (CK2), Utp22, and Rrp7. Fhl1 is loosely associated with the CURI complex; its absence partially destabilizes the complex. The CK2 within the complex phosphorylates Ifh1 in vitro but no other members of the complex. Two major components of this complex, Utp22 and Rrp7, are essential participants in the processing of pre-rRNA. Depletion of either protein, but not of other proteins in the early processing steps, brings about a substantial increase in ribosomal protein mRNA. We propose a model in which the CURI complex is a key mediator between the two parallel pathways necessary for ribosome synthesis: the transcription and processing of pre-rRNA and the transcription of ribosomal protein genes.

摘要

现已明确,在酿酒酵母中,核糖体蛋白基因的转录占RNA聚合酶II总转录量的很大一部分,其受三种转录因子Rap1、Fhl1和Ifh1的相互作用控制。其中,只有Rap1直接与DNA结合,且只有在转录受抑制时Ifh1才不存在。我们进一步研究了这种相互作用的性质,发现Ifh1实际上与至少两种复合物相关。除了与Rap1和Fhl1结合外,Ifh1还与酪蛋白激酶2(CK2)、Utp22和Rrp7形成一种复合物(CURI)。Fhl1与CURI复合物松散结合;它的缺失会部分破坏该复合物的稳定性。复合物中的CK2在体外使Ifh1磷酸化,但不使复合物中的其他成员磷酸化。该复合物的两个主要成分Utp22和Rrp7是前体rRNA加工过程中的必需参与者。耗尽这两种蛋白质中的任何一种,但不是早期加工步骤中的其他蛋白质,会导致核糖体蛋白mRNA大幅增加。我们提出了一个模型,其中CURI复合物是核糖体合成所需的两条平行途径之间的关键介质:前体rRNA的转录和加工以及核糖体蛋白基因的转录。

相似文献

1
Potential interface between ribosomal protein production and pre-rRNA processing.
Mol Cell Biol. 2007 Jul;27(13):4815-24. doi: 10.1128/MCB.02062-06. Epub 2007 Apr 23.
2
A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.
Mol Cell. 2016 Nov 17;64(4):720-733. doi: 10.1016/j.molcel.2016.10.003. Epub 2016 Nov 3.
3
Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae.
Biochim Biophys Acta. 2016 Aug;1859(8):1004-13. doi: 10.1016/j.bbagrm.2016.06.003. Epub 2016 Jun 15.
4
Fine-structure analysis of ribosomal protein gene transcription.
Mol Cell Biol. 2006 Jul;26(13):4853-62. doi: 10.1128/MCB.02367-05.
6
The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes.
Nature. 2004 Dec 23;432(7020):1054-8. doi: 10.1038/nature03175.
7
Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1.
Nature. 2004 Dec 23;432(7020):1058-61. doi: 10.1038/nature03200.
9
The IFH1 gene product interacts with a fork head protein in Saccharomyces cerevisiae.
Yeast. 1995 Mar;11(3):261-70. doi: 10.1002/yea.320110308.
10
Feedback regulation of ribosome assembly.
Curr Genet. 2018 Apr;64(2):393-404. doi: 10.1007/s00294-017-0764-x. Epub 2017 Oct 11.

引用本文的文献

1
Kin17 promotes rDNA transcription, ribosomal biogenesis, and cortical lamination.
EMBO Rep. 2025 Jul 17. doi: 10.1038/s44319-025-00524-3.
2
Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins.
World J Biol Chem. 2024 Aug 12;15(1):97938. doi: 10.4331/wjbc.v15.i1.97938.
3
RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability.
RNA Biol. 2024 Jan;21(1):1-16. doi: 10.1080/15476286.2024.2381910. Epub 2024 Jul 24.
4
Ribosomal proteins: the missing piece in the inflammation puzzle?
Mol Cell Biochem. 2025 Feb;480(2):785-797. doi: 10.1007/s11010-024-05050-9. Epub 2024 Jul 1.
5
SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid.
J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202206061. Epub 2023 Apr 12.
6
Ribosome biogenesis factors-from names to functions.
EMBO J. 2023 Apr 3;42(7):e112699. doi: 10.15252/embj.2022112699. Epub 2023 Feb 10.
7
Interaction of TOR and PKA Signaling in .
Biomolecules. 2022 Jan 26;12(2):210. doi: 10.3390/biom12020210.
8
A comprehensive landscape of 60S ribosome biogenesis factors.
Cell Rep. 2022 Feb 8;38(6):110353. doi: 10.1016/j.celrep.2022.110353.
9
Yeast Crf1p: An activator in need is an activator indeed.
Comput Struct Biotechnol J. 2021 Dec 8;20:107-116. doi: 10.1016/j.csbj.2021.12.003. eCollection 2022.
10
Early rRNA processing is a stress-dependent regulatory event whose inhibition maintains nucleolar integrity.
Nucleic Acids Res. 2022 Jan 25;50(2):1033-1051. doi: 10.1093/nar/gkab1231.

本文引用的文献

2
Fine-structure analysis of ribosomal protein gene transcription.
Mol Cell Biol. 2006 Jul;26(13):4853-62. doi: 10.1128/MCB.02367-05.
4
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Nature. 2006 Mar 30;440(7084):637-43. doi: 10.1038/nature04670. Epub 2006 Mar 22.
5
Proteome survey reveals modularity of the yeast cell machinery.
Nature. 2006 Mar 30;440(7084):631-6. doi: 10.1038/nature04532. Epub 2006 Jan 22.
6
A global view of CK2 function and regulation.
Mol Cell Biochem. 2005 Jun;274(1-2):163-70. doi: 10.1007/s11010-005-2945-z.
8
Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins.
EMBO J. 2005 Feb 9;24(3):533-42. doi: 10.1038/sj.emboj.7600553. Epub 2005 Feb 3.
9
10
Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1.
Nature. 2004 Dec 23;432(7020):1058-61. doi: 10.1038/nature03200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验