Sharif Shasad, Denisov Gleb S, Toney Michael D, Limbach Hans-Heinrich
Institut für Chemie und Biochemie, Takustrasse 3, Freie Universität Berlin, D-14195 Berlin, Germany.
J Am Chem Soc. 2007 May 16;129(19):6313-27. doi: 10.1021/ja070296+. Epub 2007 Apr 25.
The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.
在低温下,于不同极性的多种非质子性和质子性溶剂中,即二氯甲烷 - d₂、乙腈 - d₃、四氢呋喃 - d₈、氟利昂混合物CDF₃/CDClF₂以及甲醇中,测定了几种¹⁵N标记的吡哆醛 - 5'-磷酸模型体系的¹H和¹⁵N核磁共振谱。特别研究了N - (吡啶叉) - 甲苯胺(1a)、N - (吡啶叉) - 甲胺(2a)的¹⁵N标记的5'-三异丙基甲硅烷基醚,以及与¹⁵N - 2 - 甲基天冬氨酸形成的席夫碱(3a),及其与质子供体如三苯甲醇、苯酚和酸性逐渐增强的羧酸形成的配合物。利用氢键相关技术,¹H/¹⁵N化学位移和标量耦合数据可与分子间O1H1N1(吡啶氮)和分子内O2H2N2(席夫碱)氢键的几何结构相关联。其中,O1H1N1的特征是一系列不对称的低势垒氢键,而O2H2N2中的质子面临中等高度的质子转移势垒。当席夫碱氮上的取代基为芳环时,O1H1N1中质子从氧向氮的转移对O2H2N2氢键中质子的位置影响很小。相比之下,当席夫碱氮上的取代基为甲基时,O1H1N1中质子从O向N的转移会促使O2H2N2中的互变异构平衡从中性的O2 - H2...N2转变为两性离子的O2 -...H2 - N(2+)形式。在水溶液中,这种耦合会消失,因为分子内O2H2N2氢键会因溶质 - 溶剂相互作用而断裂。然而,在模拟酶活性位点中与席夫碱形成氢键的甲醇中,这种耦合得以保留。因此,吡哆醛 - 5'-磷酸酶中席夫碱中间体的反应活性可能可通过吡啶氮的差异质子化来调节,以满足所催化反应的需求。