Suppr超能文献

Dihydropyridines interact with calcium-independent potassium currents in embryonic mammalian sensory neurons.

作者信息

Valmier J, Richard S, Devic E, Nargeot J, Simonneau M, Baldy-Moulinier M

机构信息

Laboratoire de Médicine Expérimentale, INSERM U 249, CNRS UPR 8402, Institut de Biologie, Montepellier, France.

出版信息

Pflugers Arch. 1991 Oct;419(3-4):281-7. doi: 10.1007/BF00371108.

Abstract

Early embryonic sensory neurons have two K currents resembling delayed rectifier and transient K currents of mature neurons. However, in contrast to those of adult neurons, the embryonic currents can hardly be separated either by electrophysiological or pharmacological methods, limiting their characterisation at these developmental stages. Using the whole-cell recording technique, we found that dihydropyridines (DHPs) inhibit the noninactivating component of the Ca-independent K currents of 13-day mouse embryo dorsal-root ganglion (DRG) cells. The inhibitory effect of nicardipine began around 0.5 microM and was nearly complete at 5 microM while Na currents were not altered. This effect was reversible and voltage-dependent. The same results were obtained using another DHP Ca antagonist, nimodipine, whereas Bay K 8644, a DHP Ca agonist, had no effect. Kinetic properties of the DHP-insensitive K current have been described and compared with those of transient K currents found in differentiated neurons. These results suggest that both Ca and K channels have DHP sites, possibly homologous, at this developmental stage. The DHP inhibition of Ca-independent K channels provides a new tool with which to study K channels both at a molecular level and during DRG development.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验