Suppr超能文献

流体中生物分子、单细胞和单纳米颗粒的称重。

Weighing of biomolecules, single cells and single nanoparticles in fluid.

作者信息

Burg Thomas P, Godin Michel, Knudsen Scott M, Shen Wenjiang, Carlson Greg, Foster John S, Babcock Ken, Manalis Scott R

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2007 Apr 26;446(7139):1066-9. doi: 10.1038/nature05741.

Abstract

Nanomechanical resonators enable the measurement of mass with extraordinary sensitivity. Previously, samples as light as 7 zeptograms (1 zg = 10(-21) g) have been weighed in vacuum, and proton-level resolution seems to be within reach. Resolving small mass changes requires the resonator to be light and to ring at a very pure tone-that is, with a high quality factor. In solution, viscosity severely degrades both of these characteristics, thus preventing many applications in nanotechnology and the life sciences where fluid is required. Although the resonant structure can be designed to minimize viscous loss, resolution is still substantially degraded when compared to measurements made in air or vacuum. An entirely different approach eliminates viscous damping by placing the solution inside a hollow resonator that is surrounded by vacuum. Here we demonstrate that suspended microchannel resonators can weigh single nanoparticles, single bacterial cells and sub-monolayers of adsorbed proteins in water with sub-femtogram resolution (1 Hz bandwidth). Central to these results is our observation that viscous loss due to the fluid is negligible compared to the intrinsic damping of our silicon crystal resonator. The combination of the low resonator mass (100 ng) and high quality factor (15,000) enables an improvement in mass resolution of six orders of magnitude over a high-end commercial quartz crystal microbalance. This gives access to intriguing applications, such as mass-based flow cytometry, the direct detection of pathogens, or the non-optical sizing and mass density measurement of colloidal particles.

摘要

纳米机械谐振器能够以极高的灵敏度测量质量。此前,在真空中已经对低至7飞克(1 fg = 10(-21) g)的样品进行了称重,质子级别的分辨率似乎也触手可及。要分辨微小的质量变化,要求谐振器质量轻且以非常纯净的音调振荡,即具有高品质因数。在溶液中,粘度会严重降低这两个特性,从而阻碍了纳米技术和生命科学中许多需要流体的应用。尽管可以设计谐振结构以尽量减少粘性损失,但与在空气或真空中进行的测量相比,分辨率仍会大幅下降。一种完全不同的方法是通过将溶液置于被真空包围的中空谐振器内来消除粘性阻尼。在此,我们证明了悬浮微通道谐振器能够以亚飞克分辨率(1 Hz带宽)对水中的单个纳米颗粒、单个细菌细胞以及吸附蛋白质的亚单层进行称重。这些结果的关键在于我们观察到,与硅晶体谐振器的固有阻尼相比,流体引起的粘性损失可以忽略不计。低质量的谐振器(100 ng)与高品质因数(15,000)相结合,使得质量分辨率比高端商用石英晶体微天平提高了六个数量级。这为诸如基于质量的流式细胞术、病原体的直接检测或胶体颗粒的非光学尺寸测量及质量密度测量等引人入胜的应用开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验