Fishel Irit, Kaufman Alon, Ruppin Eytan
School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
Bioinformatics. 2007 Jul 1;23(13):1599-606. doi: 10.1093/bioinformatics/btm149. Epub 2007 Apr 26.
With the increasing availability of cancer microarray data sets there is a growing need for integrative computational methods that evaluate multiple independent microarray data sets investigating a common theme or disorder. Meta-analysis techniques are designed to overcome the low sample size typical to microarray experiments and yield more valid and informative results than each experiment separately.
We propose a new meta-analysis technique that aims at finding a set of classifying genes, whose expression level may be used to answering the classification question in hand. Specifically, we apply our method to two independent lung cancer microarray data sets and identify a joint core subset of genes which putatively play an important role in tumor genesis of the lung. The robustness of the identified joint core set is demonstrated on a third unseen lung cancer data set, where it leads to successful classification using very few top-ranked genes. Identifying such a set of genes is of significant importance when searching for biologically meaningful biomarkers.
Supplementary data are available at Bioinformatics online.
随着癌症微阵列数据集的可用性不断提高,对整合计算方法的需求日益增长,这些方法用于评估多个研究共同主题或疾病的独立微阵列数据集。荟萃分析技术旨在克服微阵列实验中典型的样本量小的问题,并比单独的每个实验产生更有效和更具信息性的结果。
我们提出了一种新的荟萃分析技术,旨在找到一组分类基因,其表达水平可用于回答手头的分类问题。具体而言,我们将我们的方法应用于两个独立的肺癌微阵列数据集,并识别出一组共同的核心基因子集,这些基因可能在肺癌的肿瘤发生中起重要作用。在第三个未见过的肺癌数据集上证明了所识别的共同核心集的稳健性,在该数据集中,使用极少数排名靠前的基因即可成功进行分类。在寻找具有生物学意义的生物标志物时,识别这样一组基因具有重要意义。
补充数据可在《生物信息学》在线获取。