Suppr超能文献

通过遗传算法实现的构象覆盖:构象空间的饱和

Conformational coverage by a genetic algorithm: saturation of conformational space.

作者信息

Pavlov Todor, Todorov Milen, Stoyanova Galina, Schmieder Patricia, Aladjov Hristo, Serafimova Rossitsa, Mekenyan Ovanes

机构信息

Laboratory of Mathematical Chemistry, University Prof. As. Zlatarov, 8010 Bourgas, Bulgaria.

出版信息

J Chem Inf Model. 2007 May-Jun;47(3):851-63. doi: 10.1021/ci700014h. Epub 2007 Apr 28.

Abstract

The molecular modeling is traditionally based on analysis of minimum energy conformers. Such simplifying assumptions could doom to failure the modeling studies given the significant variation of the geometric and electronic characteristics across the multitude of energetically reasonable conformers representing the molecules. Moreover, it has been found that the lowest energy conformers of chemicals are not necessarily the active ones with respect to various endpoints. Hence, the selection of active conformers appears to be as important as the selection of molecular descriptors in the modeling process. In this respect, we have developed effective tools for conformational analysis based on a genetic algorithm (GA), published in J. Chem. Inf. Comput. Sci. (1994, 34, 234; 1999, 39 (6), 997) and J. Chem. Inf. Model. (2005, 45 (2), 283). This paper presents a further improvement of the evolutionary algorithm for conformer generation minimizing the sensitivity of conformer distributions from the effect of smoothing parameter and improving the reproducibility of conformer distributions given the nondeterministic character of the genetic algorithm (GA). The ultimate goal of the saturation is to represent the conformational space of chemicals with an optimal number of conformers providing a stable conformational distribution which cannot be further perturbed by the addition of new conformers. The generation of stable conformational distributions of chemicals by a limited number of conformers will improve the adequacy of the subsequent molecular modeling analysis. The impact of the saturation procedure on conformer distributions in a specific structural space is illustrated by selected examples. The effect of the procedure on similarity assessment between chemicals is discussed.

摘要

传统上,分子建模基于对最低能量构象异构体的分析。鉴于代表分子的众多能量合理的构象异构体在几何和电子特征方面存在显著差异,这种简化假设可能会使建模研究注定失败。此外,已经发现,就各种端点而言,化学物质的最低能量构象异构体不一定是活性构象异构体。因此,在建模过程中,选择活性构象异构体似乎与选择分子描述符一样重要。在这方面,我们基于遗传算法(GA)开发了有效的构象分析工具,相关成果发表在《化学信息与计算机科学杂志》(1994年,34卷,234页;1999年,39卷(6),997页)和《化学信息与模型杂志》(2005年,45卷(2),283页)上。本文提出了一种构象异构体生成进化算法的进一步改进方法,该方法可将构象异构体分布对平滑参数影响的敏感性降至最低,并鉴于遗传算法(GA)的非确定性特征提高构象异构体分布的可重复性。饱和度的最终目标是以最佳数量的构象异构体来表示化学物质的构象空间,从而提供一种稳定的构象分布,这种分布不会因添加新的构象异构体而受到进一步干扰。通过有限数量的构象异构体生成化学物质的稳定构象分布,将提高后续分子建模分析的充分性。通过选定的示例说明了饱和度程序对特定结构空间中构象异构体分布的影响。讨论了该程序对化学物质之间相似性评估的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验