Sanches Mario, Krauchenco Sandra, Martins Nadia H, Gustchina Alla, Wlodawer Alexander, Polikarpov Igor
Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense, 400, CEP 13560-970, São Carlos, SP, Brazil.
J Mol Biol. 2007 Jun 15;369(4):1029-40. doi: 10.1016/j.jmb.2007.03.049. Epub 2007 Mar 24.
Although a majority of HIV-1 infections in Brazil are caused by the subtype B virus (also prevalent in the United States and Western Europe), viral subtypes F and C are also found very frequently. Genomic differences between the subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. The current anti-HIV drugs have been developed primarily against subtype B and the effects arising from the combination of drug-resistance mutations with the naturally existing polymorphisms in non-B HIV-1 subtypes are only beginning to be elucidated. To gain more insights into the structure and function of different variants of HIV proteases, we have determined a 2.1 A structure of the native subtype F HIV-1 protease (PR) in complex with the protease inhibitor TL-3. We have also solved crystal structures of two multi-drug resistant mutant HIV PRs in complex with TL-3, from subtype B (Bmut) carrying the primary mutations V82A and L90M, and from subtype F (Fmut) carrying the primary mutation V82A plus the secondary mutation M36I, at 1.75 A and 2.8 A resolution, respectively. The proteases Bmut, Fwt and Fmut exhibit sevenfold, threefold, and 54-fold resistance to TL-3, respectively. In addition, the structure of subtype B wild type HIV-PR in complex with TL-3 has been redetermined in space group P6(1), consistent with the other three structures. Our results show that the primary mutation V82A causes the known effect of collapsing the S1/S1' pockets that ultimately lead to the reduced inhibitory effect of TL-3. Our results further indicate that two naturally occurring polymorphic substitutions in subtype F and other non-B HIV proteases, M36I and L89M, may lead to early development of drug resistance in patients infected with non-B HIV subtypes.
虽然巴西的大多数HIV-1感染是由B亚型病毒引起的(在美国和西欧也很普遍),但病毒F亚型和C亚型也很常见。各亚型之间的基因组差异导致编码蛋白出现序列变异,包括HIV-1蛋白酶。目前的抗HIV药物主要是针对B亚型研发的,而耐药性突变与非B型HIV-1亚型中天然存在的多态性相结合所产生的影响才刚刚开始得到阐明。为了更深入了解HIV蛋白酶不同变体的结构和功能,我们确定了天然F亚型HIV-1蛋白酶(PR)与蛋白酶抑制剂TL-3复合物的2.1埃结构。我们还解析了两种多药耐药突变型HIV PR与TL-3复合物的晶体结构,分别是来自B亚型(Bmut)携带主要突变V82A和L90M的,以及来自F亚型(Fmut)携带主要突变V82A加次要突变M36I的,分辨率分别为1.75埃和2.8埃。蛋白酶Bmut、Fwt和Fmut对TL-3的耐药性分别为7倍、3倍和54倍。此外,B亚型野生型HIV-PR与TL-3复合物的结构已在空间群P6(1)中重新确定,与其他三种结构一致。我们的结果表明,主要突变V82A导致了S1/S1'口袋塌陷的已知效应,最终导致TL-3的抑制作用减弱。我们的结果进一步表明,F亚型和其他非B型HIV蛋白酶中两个天然存在的多态性取代,M36I和L89M,可能导致感染非B型HIV亚型的患者早期出现耐药性。