Suppr超能文献

平行姐妹染色单体黏连途径的遗传剖析

Genetic dissection of parallel sister-chromatid cohesion pathways.

作者信息

Xu Hong, Boone Charles, Brown Grant W

机构信息

Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

出版信息

Genetics. 2007 Jul;176(3):1417-29. doi: 10.1534/genetics.107.072876. Epub 2007 May 4.

Abstract

Sister-chromatid cohesion, the process of pairing replicated chromosomes during mitosis and meiosis, is mediated through the essential cohesin complex and a number of nonessential cohesion genes, but the specific roles of these nonessential genes in sister-chromatid cohesion remain to be clarified. We analyzed sister-chromatid cohesion in double mutants of mrc1Delta, tof1Delta, and csm3Delta and identified additive cohesion defects that indicated the existence of at least two pathways that contribute to sister-chromatid cohesion. To understand the relationship of other nonessential cohesion genes with respect to these two pathways, pairwise combinations of deletion and temperature-sensitive alleles were tested for cohesion defects. These data defined two cohesion pathways, one containing CSM3, TOF1, CTF4, and CHL1, and the second containing MRC1, CTF18, CTF8, and DCC1. Furthermore, we found that the nonessential genes are not important for the maintenance of cohesion at G(2)/M. Thus, our data suggest that nonessential cohesion genes make critical redundant contributions to the establishment of sister-chromatid cohesion and define two cohesion pathways, thereby establishing a framework for understanding the role of nonessential genes in sister-chromatid cohesion.

摘要

姐妹染色单体黏连是指在有丝分裂和减数分裂过程中配对复制染色体的过程,它是通过必需的黏连蛋白复合体和一些非必需的黏连基因介导的,但这些非必需基因在姐妹染色单体黏连中的具体作用仍有待阐明。我们分析了mrc1Delta、tof1Delta和csm3Delta双突变体中的姐妹染色单体黏连情况,并确定了累加的黏连缺陷,这表明至少存在两条有助于姐妹染色单体黏连的途径。为了了解其他非必需黏连基因与这两条途径的关系,我们测试了缺失和温度敏感等位基因的成对组合的黏连缺陷。这些数据定义了两条黏连途径,一条包含CSM3、TOF1、CTF4和CHL1,另一条包含MRC1、CTF18、CTF8和DCC1。此外,我们发现非必需基因对于在G(2)/M期维持黏连并不重要。因此,我们的数据表明,非必需黏连基因对姐妹染色单体黏连的建立做出了关键的冗余贡献,并定义了两条黏连途径,从而为理解非必需基因在姐妹染色单体黏连中的作用建立了一个框架。

相似文献

1
Genetic dissection of parallel sister-chromatid cohesion pathways.
Genetics. 2007 Jul;176(3):1417-29. doi: 10.1534/genetics.107.072876. Epub 2007 May 4.
3
An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae.
Chromosoma. 2013 Mar;122(1-2):121-34. doi: 10.1007/s00412-013-0396-y. Epub 2013 Jan 20.
4
Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors.
Chromosoma. 2023 Jun;132(2):117-135. doi: 10.1007/s00412-023-00797-4. Epub 2023 May 11.
5
Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment.
Mol Cell. 2020 May 21;78(4):725-738.e4. doi: 10.1016/j.molcel.2020.03.017. Epub 2020 Apr 10.
7
The cohesin complex of yeasts: sister chromatid cohesion and beyond.
FEMS Microbiol Rev. 2023 Jan 16;47(1). doi: 10.1093/femsre/fuac045.
8
S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit.
mBio. 2022 Aug 30;13(4):e0142022. doi: 10.1128/mbio.01420-22. Epub 2022 Jun 16.
9
Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae.
Genetics. 2011 Apr;187(4):1041-51. doi: 10.1534/genetics.110.122358. Epub 2011 Jan 26.
10
Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome.
Mol Cell. 2016 Aug 4;63(3):371-84. doi: 10.1016/j.molcel.2016.05.036. Epub 2016 Jul 7.

引用本文的文献

1
Cohesin in 3D: development, differentiation, and disease.
Genes Dev. 2025 Jun 2;39(11-12):679-696. doi: 10.1101/gad.352671.125.
2
Sister chromatid cohesion establishment during DNA replication termination.
Science. 2024 Apr 5;384(6691):119-124. doi: 10.1126/science.adf0224. Epub 2024 Mar 14.
3
Coordination of cohesin and DNA replication observed with purified proteins.
Nature. 2024 Feb;626(7999):653-660. doi: 10.1038/s41586-023-07003-6. Epub 2024 Jan 24.
5
Chromatin assembly factor-1 preserves genome stability in Δ cells by promoting sister chromatid cohesion.
Cell Stress. 2023 Aug 14;7(9):69-89. doi: 10.15698/cst2023.09.289. eCollection 2023 Sep 11.
6
PCNA recruits cohesin loader Scc2 to ensure sister chromatid cohesion.
Nat Struct Mol Biol. 2023 Sep;30(9):1286-1294. doi: 10.1038/s41594-023-01064-x. Epub 2023 Aug 17.
7
Genome control by SMC complexes.
Nat Rev Mol Cell Biol. 2023 Sep;24(9):633-650. doi: 10.1038/s41580-023-00609-8. Epub 2023 May 25.
8
Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors.
Chromosoma. 2023 Jun;132(2):117-135. doi: 10.1007/s00412-023-00797-4. Epub 2023 May 11.
9
Application of neural network-based image analysis to detect sister chromatid cohesion defects.
Sci Rep. 2023 Feb 6;13(1):2133. doi: 10.1038/s41598-023-28742-6.
10
MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC.
Life Sci Alliance. 2022 Dec 8;6(2). doi: 10.26508/lsa.202201596. Print 2023 Feb.

本文引用的文献

2
Condensin is required for chromosome arm cohesion during mitosis.
Genes Dev. 2006 Nov 1;20(21):2973-84. doi: 10.1101/gad.1468806.
3
Establishment of sister chromatid cohesion at the S. cerevisiae replication fork.
Mol Cell. 2006 Sep 15;23(6):787-99. doi: 10.1016/j.molcel.2006.08.018. Epub 2006 Sep 7.
4
PCNA controls establishment of sister chromatid cohesion during S phase.
Mol Cell. 2006 Sep 1;23(5):723-32. doi: 10.1016/j.molcel.2006.07.007. Epub 2006 Aug 24.
5
Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication.
Curr Biol. 2006 Aug 8;16(15):1571-8. doi: 10.1016/j.cub.2006.06.068.
7
A DNA integrity network in the yeast Saccharomyces cerevisiae.
Cell. 2006 Mar 10;124(5):1069-81. doi: 10.1016/j.cell.2005.12.036. Epub 2006 Feb 16.
8
Direct interaction between cohesin complex and DNA replication machinery.
Biochem Biophys Res Commun. 2006 Mar 17;341(3):770-5. doi: 10.1016/j.bbrc.2006.01.029. Epub 2006 Jan 19.
9
The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):897-902. doi: 10.1073/pnas.0506540103. Epub 2006 Jan 17.
10
Multifaceted role of the Saccharomyces cerevisiae Srs2 helicase in homologous recombination regulation.
Biochem Soc Trans. 2005 Dec;33(Pt 6):1447-50. doi: 10.1042/BST0331447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验