Perier Celine, Bové Jordi, Wu Du-Chu, Dehay Benjamin, Choi Dong-Kug, Jackson-Lewis Vernice, Rathke-Hartlieb Silvia, Bouillet Philippe, Strasser Andreas, Schulz Jörg B, Przedborski Serge, Vila Miquel
Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):8161-6. doi: 10.1073/pnas.0609874104. Epub 2007 May 2.
Dysfunction of mitochondrial complex I is associated with a wide spectrum of neurodegenerative disorders, including Parkinson's disease (PD). In rodents, inhibition of complex I leads to degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), as seen in PD, through activation of mitochondria-dependent apoptotic molecular pathways. In this scenario, complex I blockade increases the soluble pool of cytochrome c in the mitochondrial intermembrane space through oxidative mechanisms, whereas activation of pro-cell death protein Bax is actually necessary to trigger neuronal death by permeabilizing the outer mitochondrial membrane and releasing cytochrome c into the cytosol. Activation of Bax after complex I inhibition relies on its transcriptional induction and translocation to the mitochondria. How complex I deficiency leads to Bax activation is currently unknown. Using gene-targeted mice, we show that the tumor suppressor p53 mediates Bax transcriptional induction after PD-related complex I blockade in vivo, but it does not participate in Bax mitochondrial translocation in this model, either by a transcription-independent mechanism or through the induction of BH3-only proteins Puma or Noxa. Instead, Bax mitochondrial translocation in this model relies mainly on the JNK-dependent activation of the BH3-only protein Bim. Targeting either Bax transcriptional induction or Bax mitochondrial translocation results in a marked attenuation of SNpc dopaminergic cell death caused by complex I inhibition. These results provide further insight into the pathogenesis of PD neurodegeneration and identify molecular targets of potential therapeutic significance for this disabling neurological illness.
线粒体复合体I功能障碍与包括帕金森病(PD)在内的多种神经退行性疾病相关。在啮齿动物中,复合体I的抑制会导致黑质致密部(SNpc)的多巴胺能神经元退化,这与PD中所见情况相同,是通过激活线粒体依赖性凋亡分子途径实现的。在这种情况下,复合体I阻断通过氧化机制增加线粒体内膜间隙中细胞色素c的可溶性池,而促细胞死亡蛋白Bax的激活实际上是通过使线粒体外膜通透并将细胞色素c释放到细胞质中来触发神经元死亡所必需的。复合体I抑制后Bax的激活依赖于其转录诱导和向线粒体的转位。目前尚不清楚复合体I缺乏如何导致Bax激活。利用基因靶向小鼠,我们发现肿瘤抑制因子p53在体内介导了与PD相关的复合体I阻断后Bax的转录诱导,但在该模型中它不参与Bax的线粒体转位,无论是通过转录非依赖机制还是通过诱导仅含BH3结构域的蛋白Puma或Noxa。相反,该模型中Bax的线粒体转位主要依赖于仅含BH3结构域的蛋白Bim的JNK依赖性激活。靶向Bax的转录诱导或Bax的线粒体转位都会导致复合体I抑制引起SNpc多巴胺能细胞死亡的显著减轻。这些结果为PD神经退行性变的发病机制提供了进一步的见解,并确定了对这种致残性神经疾病具有潜在治疗意义的分子靶点。