Jones Peter M, George Anthony M
Department of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, New South Wales 2007, Australia.
J Biol Chem. 2007 Aug 3;282(31):22793-803. doi: 10.1074/jbc.M700809200. Epub 2007 May 7.
ATP-binding cassette transporters perform energy-dependent transmembrane solute trafficking in all organisms. These proteins often mediate cellular resistance to therapeutic drugs and are involved in a range of human genetic diseases. Enzymological studies have implicated a helical subdomain within the ATP-binding cassette nucleotide-binding domain in coupling ATP hydrolysis to solute transport in the transmembrane domains. Consistent with this, structural and computational analyses have indicated that the helical subdomain undergoes nucleotide-dependent movement relative to the core of the nucleotide-binding domain fold. Here we use theoretical methods to examine the allosteric nucleotide dependence of helical subdomain transitions to further elucidate its role in interactions between the transmembrane and nucleotide-binding domains. Unrestrained 30-ns molecular dynamics simulations of the ATP-bound, ADP-bound, and apo states of the MJ0796 monomer support the idea that interaction of a conserved glutamine residue with the catalytic metal mediates the rotation of the helical subdomain in response to nucleotide binding and hydrolysis. Simulations of the nucleotide-binding domain dimer revealed that ATP hydrolysis induces a large transition of one helical subdomain, resulting in an asymmetric conformation of the dimer not observed previously. A coarse-grained elastic network analysis supports this finding, revealing the existence of corresponding dynamic modes intrinsic to the contact topology of the protein. The implications of these findings for the coupling of ATP hydrolysis to conformational changes in the transmembrane domains required for solute transport are discussed in light of recent whole transporter structures.
ATP结合盒转运蛋白在所有生物体中进行能量依赖的跨膜溶质转运。这些蛋白质常常介导细胞对治疗药物的抗性,并涉及一系列人类遗传疾病。酶学研究表明,ATP结合盒核苷酸结合结构域内的一个螺旋亚结构域将ATP水解与跨膜结构域中的溶质转运偶联起来。与此一致的是,结构和计算分析表明,螺旋亚结构域相对于核苷酸结合结构域折叠的核心发生核苷酸依赖性运动。在这里,我们使用理论方法来研究螺旋亚结构域转变的变构核苷酸依赖性,以进一步阐明其在跨膜结构域与核苷酸结合结构域之间相互作用中的作用。对MJ0796单体的ATP结合态、ADP结合态和无核苷酸态进行的30纳秒无约束分子动力学模拟支持了这样一种观点,即一个保守的谷氨酰胺残基与催化金属的相互作用介导了螺旋亚结构域响应核苷酸结合和水解的旋转。对核苷酸结合结构域二聚体的模拟表明,ATP水解诱导一个螺旋亚结构域发生大的转变,导致二聚体出现以前未观察到的不对称构象。粗粒度弹性网络分析支持了这一发现,揭示了蛋白质接触拓扑结构固有的相应动态模式。根据最近的全转运蛋白结构,讨论了这些发现对将ATP水解与溶质转运所需的跨膜结构域构象变化偶联的意义。