Yan Yun, Besseling Nicolaas A M, de Keizer Arie, Stuart Martien A Cohen
Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, Wageningen, The Netherlands.
J Phys Chem B. 2007 May 31;111(21):5811-8. doi: 10.1021/jp070332r. Epub 2007 May 9.
In this paper we compare the formation of complex coacervate core micelles (C3Ms) from two different tricompontent mixtures, namely neodymium, the bisligand L2EO4 and the poly(cation)-block-poly(neutral) diblock copolymer P2MVP41-b-PEO205, and zinc, L2EO4 and P2MVP41-b-PEO205 mixed systems. Three sets of titration experiments were carried out for each system: (i) titration of diblock copolymer P2MVP41-b-PEO205 with the stoichiometric mixture of metal ions and bisligands, (ii) titration of a mixture of diblock copolymer and bisligand with metal ions, and (iii) titration of a mixture of diblock copolymer and metal ions with bisligands. In all the above three cases, micelles are found to form either in a broad range of charge ratios or in a broad range of metal/bisligand ratios. Upon addition of Nd2-(L2EO4)3 coordination polymer to P2MVP41-b-PEO205 solution, and upon addition of Nd3+ to a mixture of L2EO4 and P2MVP41-b-PEO205, micelles are found to form immediately after the first addition, whereas micelles show up in the similar zinc system only after a certain threshold Zn-(L2EO4) or Zn2+ concentration. This difference can be traced to the different structures of the Nd2-(L2EO4)3 and Zn-(L2EO4) coordination compounds. At very low concentrations, Zn-(L2EO4) are ring-like oligomers, but Nd2-(L2EO4)3 are larger networks. The network structure favors the formation of coacervate micellar core with P2MVP41-b-PEO205. Moreover, excess of Nd3+ ions will break up the C3Ms, while the same amount of Zn2+ has hardly any effect on the C3Ms. The breakdown of C3Ms by Nd3+ is due to the charge inversion of the coordination complex with increasing [Nd3+]/[L2EO4] ratio, which results in repulsive interaction between the coordination complex and the diblock copolymer, whereas no such interaction can occur in the zinc system.
在本文中,我们比较了由两种不同的三组分混合物形成复合凝聚层核心胶束(C3M)的情况,这两种混合物分别是钕、双配体L2EO4和聚阳离子-嵌段-聚中性二嵌段共聚物P2MVP41-b-PEO205的混合物,以及锌、L2EO4和P2MVP41-b-PEO205的混合体系。对每个体系进行了三组滴定实验:(i)用金属离子和双配体的化学计量混合物滴定二嵌段共聚物P2MVP41-b-PEO205,(ii)用金属离子滴定二嵌段共聚物和双配体的混合物,以及(iii)用双配体滴定二嵌段共聚物和金属离子的混合物。在上述所有三种情况下,发现胶束在很宽的电荷比范围或很宽的金属/双配体比范围内形成。向P2MVP41-b-PEO205溶液中加入Nd2-(L2EO4)3配位聚合物,以及向L2EO4和P2MVP41-b-PEO205的混合物中加入Nd3+后,发现胶束在第一次加入后立即形成,而在类似的锌体系中,胶束仅在达到一定的Zn-(L2EO4)或Zn2+浓度阈值后才出现。这种差异可以追溯到Nd2-(L2EO4)3和Zn-(L2EO4)配位化合物的不同结构。在非常低的浓度下,Zn-(L2EO4)是环状低聚物,但Nd2-(L2EO4)3是更大的网络结构。这种网络结构有利于与P2MVP41-b-PEO205形成凝聚层胶束核心。此外,过量的Nd3+离子会破坏C3M,而相同量的Zn2+对C3M几乎没有任何影响。Nd3+对C3M的破坏是由于配位络合物的电荷反转随着[Nd3+]/[L2EO4]比值的增加而发生,这导致配位络合物与二嵌段共聚物之间产生排斥相互作用,而在锌体系中不会发生这种相互作用。