Chen Ting, Zhang Zhenli, Glotzer Sharon C
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA.
Langmuir. 2007 Jun 5;23(12):6598-605. doi: 10.1021/la063755d. Epub 2007 May 10.
We investigate the self-assembly of anisotropic cone-shaped particles decorated by ringlike attractive "patches". In a recent paper, we demonstrated that the self-assembled clusters, which arise due to the conical particle's anisotropic shape combined with directional attractive interactions, are precise for certain cluster sizes, resulting in a precise packing sequence of clusters of increasing sizes with decreasing cone angles (Chen et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 717-722). Here we explore the dependence of cluster packing on the cone angle and cooling rate and discuss the "stability" and "metastability" of the resulting structures as well as polymorphism of non-"magic-number" clusters. We investigate large clusters of cones and discuss the implication of our simulation results in the context of the Israelachvili packing rule for surfactants and a recent geometrical packing analysis on hard cones in the limit of large numbers of cones.
我们研究了由环状吸引性“斑块”修饰的各向异性锥形颗粒的自组装过程。在最近的一篇论文中,我们证明了由于锥形颗粒的各向异性形状与定向吸引相互作用而产生的自组装簇,对于某些簇尺寸是精确的,从而导致随着锥角减小,尺寸增大的簇具有精确的堆积序列(Chen等人,《美国国家科学院院刊》,2007年,104卷,717 - 722页)。在这里,我们探讨簇堆积对锥角和冷却速率的依赖性,并讨论所得结构的“稳定性”和“亚稳定性”以及非“幻数”簇的多态性。我们研究了大量锥形簇,并在表面活性剂的以色列阿查维利堆积规则以及最近对大量锥形极限情况下硬锥的几何堆积分析的背景下讨论了我们模拟结果的含义。