Zhu Hui, Smith Paul, Wang Li Kai, Shuman Stewart
Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA.
Virology. 2007 Sep 15;366(1):126-36. doi: 10.1016/j.virol.2007.03.059. Epub 2007 May 9.
T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.
T4多核苷酸激酶/磷酸酶(Pnkp)是一类双功能酶的代表,具有5'-激酶和3'磷酸酶活性,在核酸修复中发挥作用。T4 Pnkp是一种由301个氨基酸组成的多肽的同四聚体,它由P环磷酸转移酶超家族的N端激酶结构域和DxD酰基磷酸酶超家族的C端磷酸酶结构域组成。同四聚体通过磷酸酶-磷酸酶和激酶-激酶同二聚体界面形成。在这里,我们鉴定出四个侧链——天冬氨酸187、丝氨酸211、赖氨酸258和天冬氨酸277——它们是3'磷酸酶活性所必需的。这些位置的丙氨酸突变消除了磷酸酶活性,而不影响激酶功能或四聚化。用天冬酰胺或谷氨酸保守取代天冬氨酸187不能恢复3'磷酸酶活性,用精氨酸或谷氨酰胺取代赖氨酸258也不能恢复。用苏氨酸代替丝氨酸211和用谷氨酸代替天冬氨酸277可恢复全部活性,而277位的天冬酰胺则没有有益作用。我们报道了Pnkp四聚体的3.0埃晶体结构,其中一个硫酸根离子在精氨酸246和精氨酸279之间配位,我们认为该位置模拟了多核苷酸3'-PO(4)底物的倒数第二个磷酸二酯(5'NpNpNp-3')之一。突变和结构数据的结合产生了一种合理的磷酸酶催化机制,包括共价催化(通过天冬氨酸165)、一般酸碱催化(通过天冬氨酸167)、金属配位(通过天冬氨酸165、天冬氨酸277和天冬氨酸278)以及过渡态稳定(通过赖氨酸258、丝氨酸211、主链酰胺和二价阳离子)。其他关键侧链起结构作用(精氨酸176、天冬氨酸187、精氨酸213、天冬氨酸254)。为了探究寡聚化在磷酸酶功能中的作用,我们在磷酸酶-磷酸酶结构域界面引入了六个双丙氨酸簇突变,其中两个(R297A-Q295A和E292A-D300A)将Pnkp从四聚体转变为二聚体并消除了磷酸酶活性。