Prud'homme Benjamin, Gompel Nicolas, Carroll Sean B
Howard Hughes Medical Institute and University of Wisconsin, Bock Laboratories, 1525 Linden Drive, Madison, WI 53706, USA.
Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1(Suppl 1):8605-12. doi: 10.1073/pnas.0700488104. Epub 2007 May 9.
Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.
理解控制形态进化的遗传和分子机制是生物学中的一项重大挑战。由于大多数动物共享一套保守的身体构建和模式形成基因,形态多样性似乎主要通过这些基因在发育过程中部署方式的变化而进化。发育调控基因的复杂表达模式通常由众多独立的顺式调控元件(CRE)控制。有人提出,形态进化主要依赖于基因调控网络结构的变化,特别是CRE内的功能变化。在这里,我们讨论了最近支持这一假设的实验研究,并揭示了调控进化发生方式的一些意外特征。从这一不断增加的证据中,我们确定了调控进化的三个关键运作原则,即调控进化如何:(i)以预先存在且活跃的转录因子和CRE的形式利用可用的遗传成分来产生新特性;(ii)通过引入基因表达的离散变化来最小化对整体适应性的损害;(iii)允许任何转录因子与下游CRE之间产生相互作用。这些原则赋予调控进化巨大的创造潜力,这既解释了密切相关物种之间相对适度的形态差异,也解释了更高分类水平群体之间更深刻的解剖学差异。