Hernández-Ortiz Juan P, de Pablo Juan J, Graham Michael D
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA.
Phys Rev Lett. 2007 Apr 6;98(14):140602. doi: 10.1103/PhysRevLett.98.140602.
An O(N) method is presented for calculation of hydrodynamic or electrostatic interactions between N point particles in a confined geometry. This approach splits point forces or sources into a local contribution for which rapidly decaying free-space analytical solutions to the Stokes or Poisson equations are used, and a global contribution whose effect is determined numerically using a fast iterative method. The scheme is applied to Brownian dynamics simulations of flowing confined polymer solutions, and the effects of concentration on hydrodynamically induced migration phenomena are illustrated.
提出了一种用于计算受限几何结构中N个点粒子之间流体动力学或静电相互作用的O(N)方法。该方法将点力或源分解为局部贡献和全局贡献,对于局部贡献,使用斯托克斯方程或泊松方程快速衰减的自由空间解析解,而全局贡献的影响则使用快速迭代方法进行数值确定。该方案应用于流动受限聚合物溶液的布朗动力学模拟,并说明了浓度对流体动力学诱导迁移现象的影响。