Suppr超能文献

连续一维系统的数值重整化群

Numerical renormalization group for continuum one-dimensional systems.

作者信息

Konik Robert M, Adamov Yury

机构信息

CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, USA.

出版信息

Phys Rev Lett. 2007 Apr 6;98(14):147205. doi: 10.1103/PhysRevLett.98.147205.

Abstract

We present a renormalization group (RG) procedure which works naturally on a wide class of interacting one-dimension models based on perturbed (possibly strongly) continuum conformal and integrable models. This procedure integrates Wilson's numerical renormalization group with Zamolodchikov's truncated conformal spectrum approach. The key to the method is that such theories provide a set of completely understood eigenstates for which matrix elements can be exactly computed. In this procedure the RG flow of physical observables can be studied both numerically and analytically. To demonstrate the approach, we study the spectrum of a pair of coupled quantum Ising chains and correlation functions in a single quantum Ising chain in the presence of a magnetic field.

摘要

我们提出了一种重整化群(RG)方法,该方法自然适用于基于微扰(可能是强微扰)连续共形和可积模型的一类广泛的一维相互作用模型。此方法将威尔逊的数值重整化群与扎莫洛德奇科夫的截断共形谱方法相结合。该方法的关键在于,此类理论提供了一组完全清楚的本征态,其矩阵元可以精确计算。在此过程中,物理可观测量的RG流既可以通过数值方法也可以通过解析方法进行研究。为了演示该方法,我们研究了一对耦合量子伊辛链的能谱以及存在磁场时单个量子伊辛链中的关联函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验